

MEREDELL FARM ANNUAL MONITORING REPORT YEAR 7 OF 7

EEP Project #247 Randolph County, North Carolina Completed Construction: 2008 Submitted November 2014

Submitted to:

NCDENR-EEP 1652 Mail Service Center Raleigh, NC 27699-1652

Monitoring Firm:

1025 Wade Avenue
Raleigh, NC 27605
Phone (919) 789-9977
Project Manager:
Philip Beach
pbeach@sepiengineering.com

EXECUTIVE SUMMARY
APPENDICES APPENDIX A - PROJECT VICINITY MAP AND BACKGROUND FILES Figure 1 - Project Vicinity Map Table 1 - Project Components and Mitigation Credits Table 2 - Project Activity and Reporting History Table 3 - Project Contacts Table Table 4 - Project Attribute Table
APPENDIX B - VISUAL ASSESSMENT DATA Figures 2-9 - Current Conditions Plan View Table 5.1 - Visual Stream Morphology Stability Assessment (UT1) Table 5.2 - Visual Stream Morphology Stability Assessment (UT2) Table 5.3 - Visual Stream Morphology Stability Assessment (M1) Table 6 - Vegetation Condition Assessment
APPENDIX C - VEGETATION PLOT DATA Table 7 - Vegetation Plot Criteria Attainment Table 8 - CVS Vegetation Plot Metadata Table 9 - Planted and Total Stem Counts (Species by Plot with Annual Means) Vegetation Plot Summary Information Invasives Treatment Plan Map Supplemental Planting Plan Map Supplemental Planting Plan List
APPENDIX D - STREAM SURVEY DATA Longitudinal Profile (UT1) Longitudinal Profile (UT2) Longitudinal Profile (M1 Upper) Longitudinal Profile (M1 Lower) Table 10a.1 - Baseline Stream Data Summary (UT1b) Table 10a.2 - Baseline Stream Data Summary (UT2b) Table 10a.3 - Baseline Stream Data Summary (M1) Table 10b.1 - Baseline Stream Data Summary (UT1b) Table 10b.2 - Baseline Stream Data Summary (UT2b) Table 10b.1 - Baseline Stream Data Summary (UT2b) Table 10b.1 - Baseline Stream Data Summary (M1)
APPENDIX E - HYDROLOGIC DATA Table 11 - Verification of Bankfull Events

EXECUTIVE SUMMARY

The Meredell Farm Stream Restoration project falls within USGS hydrologic unit 03030003. The project lies within a rural setting that includes agricultural, forested, and low-density residential areas. The project is located on Koopman Dairies (formerly Meredell Farm), a small farm operation that includes dairy and row crop production. Prior to restoration work, the project stream had been historically destabilized through channelization and hoof-shear.

Baker Engineering designed the restoration plans and restoration was completed in 2008. SEPI Engineering & Construction (SEPI) began the stream and riparian monitoring for Meredell Farms in October 2013.

The goal of the project is to restore and improve the stream channel and riparian buffer form and function on-site through the following objectives:

- Restore 3,865 LF of channel dimension, pattern and profile.
- Enhance 4,704 LF of channel dimension, and/or profile.
- Preserve 5,136 LF of stream channel and riparian buffer.
- Improve floodplain functionality by matching floodplain elevation with bankfull stage.
- Establish native stream bank and floodplain vegetation in the permanent conservation easement.
- Improve the water quality in the Upper Cape Fear River watershed by fencing cattle out of the stream and reducing bank erosion.

SEPI performed stream and riparian monitoring in the fall of 2014 for this Year 7 Annual Monitoring Report.

VEGETATION ASSESSMENT

Vegetation monitoring in Year 7 included visual assessment of the riparian zone and buffer mitigation areas to update the Current Conditions Plan View (CCPV) and Carolina Vegetation Survey (CVS) assessment of 12 vegetation plots. SEPI observed areas of concern that based on visual assessment did not appear to be meeting riparian zone success criteria of 260 stems per acre after 7 years. These observed conditions are reflected in the CCPV figures (**Figures 2-9**) within this report and briefly discussed below.

- The conservation easement area surrounding stream reaches UT1, UT2, M1, and UT5 continue to have large areas that lack significant counts of visible planted woody stems. Treatments applied to areas where the easement was replanted seemed to have little effect on herbaceous cover. It was visually observed that the vegetation established within the buffer and outside of the bankfull bench area primarily consists of grasses and herbaceous species. Good vegetation growth was primarily observed within the bankfull bench area for each of these reaches.
- The lower M1 area (downstream of the stream crossing) continues to have a significant invasive species population consisting of Chinese privet and cattails.
- UT3 and UT4 also had instances of tree-of-heaven and Chinese privet throughout the reaches.
- The site continues to be free of encroachments to the easement, although a portion of the fence at the stream crossing of UT5 has been damaged.

Detailed data collected from the CVS assessment of the 12 vegetation plots can be found in **Appendix C** of this report. Ten of the 12 veg plots exceeded the riparian zone success criteria of 260 stems/acre after 7 years, and 4 of the 11 buffer vegetation plots exceeded the buffer mitigation success criteria of 320 stems/acre after 7 years. The total average planted stem density for all twelve veg plots is 425 stems/acre for Year 7 Monitoring.

Invasive species continue to be treated on reaches UT1, UT2, UT3, UT4, and M1. The target species of concern includes *Ailanthus altissima* and *Ligustrum sinense*. Detailed maps on invasive species control efforts can be found in **Appendix C**.

STREAM ASSESSMENT

Year 7 stream channel monitoring included a visual assessment of the stream channel and in-stream structures to update the Current Conditions Plan View (CCPV) and collection of geomorphic profile data. Visual observations of the stream channel conditions were conducted to determine if the project is establishing toward the stream success criteria outlined in the approved Restoration Plan (2004). These goals are outlined below:

- Longitudinal Profile:
 - o "The longitudinal profile data should show that the bedform features are remaining stable and are not aggrading or degrading. The pools should remain deep with flat water surface slopes and the riffles should remain steep and shallow."

The visual assessment and geomorphic data collection completed for the site indicated that approximately 95% of the project reaches were performing within established success criteria ranges. The remaining 5% were exhibiting impacts such as headcuts and stream structure instabilities. The observed stream channel conditions are reflected in the CCPV figures (**Figures 2-9**) within this report and briefly discussed below.

- Two instream structures (Stations M1: 303+25 and 305+00) had flow going between the sill and arm boulders, but no further instability was observed as a result of the conditions
- Two log vanes and one rootwad (Stations M1: 303+75, 314+50, and 321+00) had approximately 15% bank erosion
- Six instances of headcut were observed on UT3, UT4, and UT5
- There continues to be a small area of concentrated overland runoff through the buffer on the UT3a near Station 10+50, and on UT4 at Station 10+00 that is causing erosion to the stream bank
- Two areas of split channel flow were identified along the existing stream at the upstream and downstream section of UT5

Geomorphic monitoring included collection of 4 longitudinal profile segments. Channel profile stability assessment includes the entire restored length of the project. Survey monuments were not present in the field. Due to this and differences in surveying methodologies between monitoring year 5 and monitoring years 6 and 7, the longitudinal profile data may differ in some areas. It should also be noted that sections of reaches UT1 and M1 Lower indicate a one foot difference in thalweg elevations between MY06 and MY07. These areas were noted as stable during the field review. Therefore, it was concluded that these differences arose from difficulty obtaining accurate GPS signal under heavy canopy which resulted in greater distances between collected points along the thalweg. Refer to **Appendix D** contained herein for detailed results of the longitudinal profile data collection.

SITE HYDROLOGY

Year 7 hydrologic bankfull indicators were collected during monitoring field visits. These indicators include collection of visually observed wracklines at, or above, the bankfull elevation and recordation of the crest gauge height located at Station 307+000 on reach M1.

- Wracklines were noted above the bankfull bench and within the floodplain during the site assessment field visit conducted on October 1, 2014.
- A crest gauge reading of 1.08 feet was recorded during the annual monitoring field visit conducted on October 1, 2014. The baseline bankfull design maximum depth range for reach M1 is 1.0 foot (min) to 1.3 feet (max); therefore, the crest gauge reading indicates that a bankfull event had occurred onsite. Refer to photograph SP1 within **Appendix E** of this report.

Summary information/data related to the occurrence of such things as beaver or encroachment, and statistics related to performance of various project and monitoring elements can be found in the tables and figures in the report appendices. Narrative background and supporting information formerly found in these reports can be found in the Baseline Monitoring Report (formerly Mitigation Plan) and in the Mitigation Plan (formerly the Restoration Plan) documents available on EEP's website. All raw data supporting the tables and figures in the appendices are available from EEP upon request.

METHODOLOGY

The following methods were utilized during the Year 7 monitoring for data collection and post-processing:

- Geomorphic topographic data collections were performed in the field using a survey-grade GPS such that each survey point has three-dimensional coordinates, and is georeferenced (NAD83-State Plane Feet FIPS 3200).
- Longitudinal stationing was developed using the as-built survey thalweg as a baseline.
- The CVS Level 2 methodology was utilized for the vegetation plot data collection.
- Permanent cross-sectional data was not required for this monitoring year.
- Particle size distribution was not required for this monitoring year.

REFERENCES

Buck Engineering, PC. 2004. Meredell Farms Stream Restoration Plan.

North Carolina Ecosystem Enhancement Program. November 2006. Content, Format and Data Requirements for EEP Monitoring Reports.

Rosgen, D.L. 1994. A Classification of Natural Rivers. Catena 22: 166-169.

Kimley-Horn and Associates, Inc. 2009. Meredell Farm Monitoring Report, Year 2 of 5.

Kimley-Horn and Associates, Inc. 2010. Meredell Farm Monitoring Report, Year 3 of 5.

Kimley-Horn and Associates, Inc. 2011. Meredell Farm Monitoring Report, Year 4 of 5.

Kimley-Horn and Associates, Inc. 2012. Meredell Farm Monitoring Report, Year 5 of 5.

SEPI Engineering & Construction. 2013. Meredell Farm Monitoring Report, Year 6 of 7.

U.S. Department of Army, Corps of Engineers. 2003. Stream Mitigation Guidelines. http://www.saw.usace.army.mil/wetlands/Mitigation/stream_mitigation.html

Appendix A Project Vicinity Map and Background Files

					Mereo	dell Farm Stream Restor Mitigation Credit		<u>'</u>					
	Stream Riparian Wetland						iffer N	Nitrogen atrient Offset					
Гуре Гotals	R 5785.5	RE 5134		R	RE	R		RE	570	0000			
						Project Componer	ıts						
Project Co	omponent -or- R	each ID	Sta	tioning/Location		Existing Footag	e/Acreage		roach II etc.)	Restoration -or- Restoration Equivalent	Restoration For		Mitigation Ratio
	Ut 1a			0+00 - 21+00		1050				EI	1100		1.5:1
	Ut 1b			21+00 - 28+80		571				R	780		1:1
	Ut 2a			0+00 - 18+00		800				EI	800		1.5:1
	Ut 2b			8+00 - 20+94		206				R	294		1:1
	M1			0+00 - 32+54		2103		I	/II	R	2254		1:1
	Ut 3a			0+00 - 16+50		400				EII	650		2.5:1
	Ut 3b			16+50 - 20+79		836				R	429		1:1
	Ut 4			0+00 - 19+13		913				EII	913		2.5:1
	Ut 5		1	0+00 - 20+75	1075				EII	1075		2.5:1 5:1	
	M2			NA NA		1398		_		P P	1398 1033		5:1
	Sandy Creek 1 Sandy Creek 2			NA NA		1033 801		_			1033 801	5:1	
	Sandy Creek 2 Sandy Creek 3			NA NA		801 1902		_		P P	1902		5:1
Restorat Leve			Stream lear feet)	Piu :	(ac	Wetland		riparian Wetla (acres)	nd	Buffer (square fe	et)	Upla (acre	
Quatamat' -	_		3757	Riverine	_	Non-Riverine				373,950			
Restoration Enhanceme			3/3/				1			8,750			
Enhancem			800							8,/30			
Enhancem			3738										
Creation	J. 11		5,55										
reservatio	on		5134				1						
High Qual							1						
	•			•	•	BMP Elements							
Element		Locati	on	Purp	ose/Function					Notes			

Table 2. Project Activity and Reporting History Meredell Farm Stream Restoration Site/247

Elapsed Time Since Grading Complete: 6 yrs 8 months Elapsed Time Since Planting Complete: 6 yrs 9 months

Number of Reporting Years¹: 7

Activity or Deliverable	Data Collection Complete	Completion or Delivery
Restoration Plan		Sept-04
Final Design – Construction Plans		Jan-07
Construction	NA	Mar-08
Containerized, bare root and B&B plantings	NA	Feb-08
As-built Mapping	Nov-07	Apr-08
Year 1 Monitoring (baseline)*	Nov-08	Jun-09
Year 2 Monitoring	Nov-09	Apr-10
Year 3 Monitoring	Oct-10	Mar-11
Year 4 Monitoring	Oct-11	Jan-12
Year 5 Monitoring	Oct-12	Feb-13
Supplemental Planting	NA	Aug-13
Year 6 Monitoring	Nov-13	Jan-14
Year 7 Monitoring	Sep-13	Nov-14

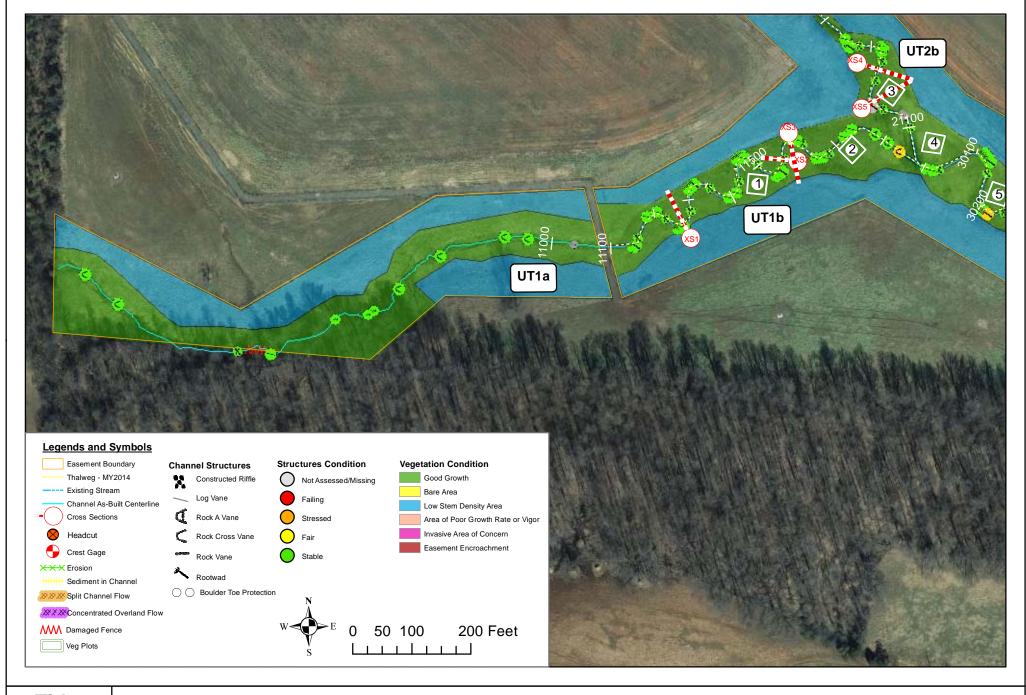
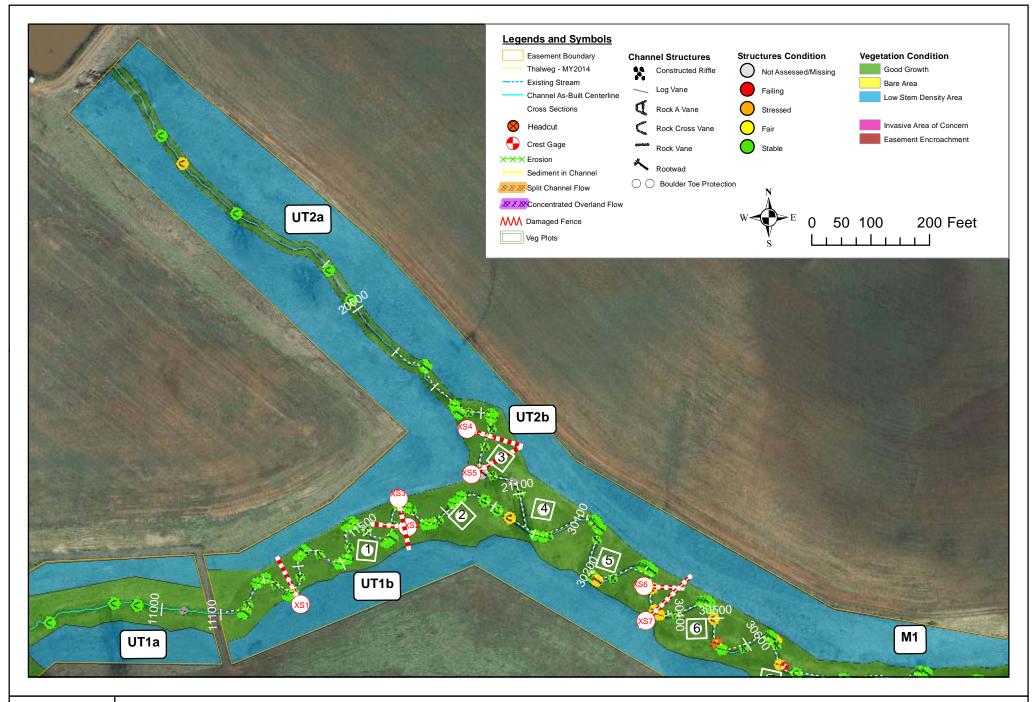

^{*}As-built plan view survey performed by Level Cross Surveying, PLLC. (No As-built monitoring data was collected or reported).

	Table 3. Project Contacts Table
N	Meredell Farm Stream Restoration Site/247
Designer	Buck Engineering, PC
	8000 Regency Parkway, Suite 200, Cary, NC 27511
Primary project design POC	Kevin Tweedy, P.E. (919) 463-5488
Construction Contractor	RiverWorks, Inc.
	8000 Regency Parkway, Suite 200, Cary, NC 27511
Construction contractor POC	(919) 459-9001
Survey Contractor	Level Cross Survey, PLLC
	668 Marsh Country Lane, Randleman, NC 27317
Survey contractor POC	(336) 495-1713
Planting Contractor	
Planting contractor POC	
Seeding Contractor	
Contractor point of contact	
Seed Mix Sources	
Nursery Stock Suppliers	
Monitoring Performers	SEPI Engineering & Construction, Inc.
	1025 Wade Avenue, Raleigh, NC 27605
Stream Monitoring POC	Philip Beach, PWS
Vegetation Monitoring POC	Kim Hamlin, Project Scientist

	able 4. Proje	ect Attribute	Table				
	ell Farm Stre	am Restorat	ion Site/247				
Project County							
Physiographic Region							
	Carolina Slat	te Belt					
Project River Basin	Cape Fear						
USGS HUC for Project (14 digit)	03030003020	0010					
NCDWQ Sub-basin for Project	03-06-09						
Within extent of EEP Watershed Plan?	no						
WRC Hab Class (Warm, Cool, Cold)	warm						
% of project easement fenced or demarcated	100						
Beaver activity observed during design phase?	No						
Resto	ration Comp	onent Attrib	ute Table				
	M1	M2	UT1	UT2	UT3	UT4	UT5
Drainage area (acres)	168	265	64	67	148	56	59
Stream order		2	1	1	1	1	1
Restored length (feet)	2254	1398	1880	1095	1351	913	1075
Perennial or Intermittent	-	P	P	P	P	P	P
Watershed type (Rural, Urban, Developing etc.)	R	R	R	R	R	R	R
Watershed LULC Distribution (e.g.)							
Residential	U	U	U	U	U	U	U
Ag-Row Crop	U	U	U	U	U	U	U
Ag-Livestock	U	U	U	U	U	U	U
Forested	U	U	U	U	U	U	U
Etc.	U	U	U	U	U	U	U
Watershed impervious cover (%)	U	U	U	U	U	U	U
NCDWQ AU/Index number							
NCDWQ classification	WS-III	WS-III	WS-III	WS-III	WS-III	WS-III	WS-III
303d listed?	No	No	No	No	No	No	No
Upstream of a 303d listed segment?	No	No	No	No	No	No	No
Reasons for 303d listing or stressor	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Total acreage of easement				49.8			
Total vegetated acreage within the easement				49.8			
Total planted acreage as part of the restoration	8.3	0	6.2	3	2.2	0	0
Rosgen classification of pre-existing		U	G4	B5-1/E5-1	B4c	G5	E5
Rosgen classification of As-built		U	U	U	U	U	U
Valley type		U	U	U	U	U	U
Valley slope		U	U	U	U	U	U
Valley side slope range (e.g. 2-3.%)		U	U	U	U	U	U
Valley toe slope range (e.g. 2-3.%)		U	U	U	U	U	U
Cowardin classification		N/A	N/A	N/A	N/A	N/A	N/A
Trout waters designation		No	No	No	No	No	No
Species of concern, endangered etc.? (Y/N)	Y	Y	Y	Y	Y	Y	Y
Dominant soil series and characteristics							
Series		U	U	U	U	U	U
Depth		U	U	U	U	U	U
Clay%		U	U	U	U	U	U
4	U	U	U	U	U	U	U
K	Ü	U	U	U	U	U	U

Use N/A for items that may not apply. Use "-" for items that are unavailable and "U" for items that are unknown

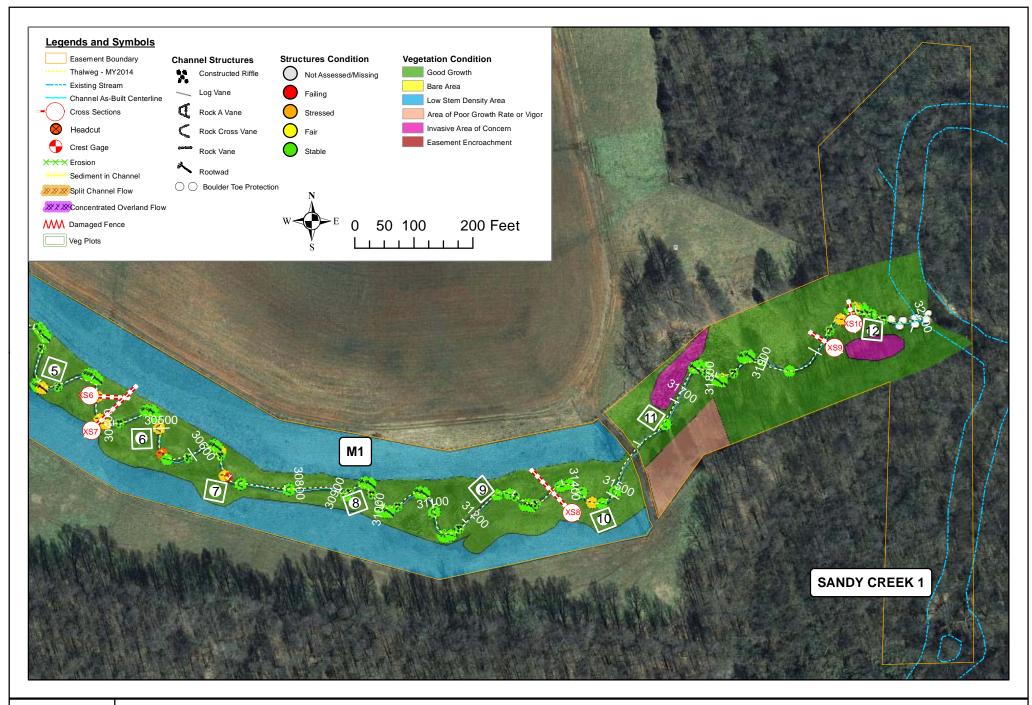
Appendix B Visual Assessment Data



Current Conditions Plan View UT1a, UT1b, and UT2b

Meredell Farm Stream Restoration Monitoring Year 7 -- 2014 Randolph County, North Carolina

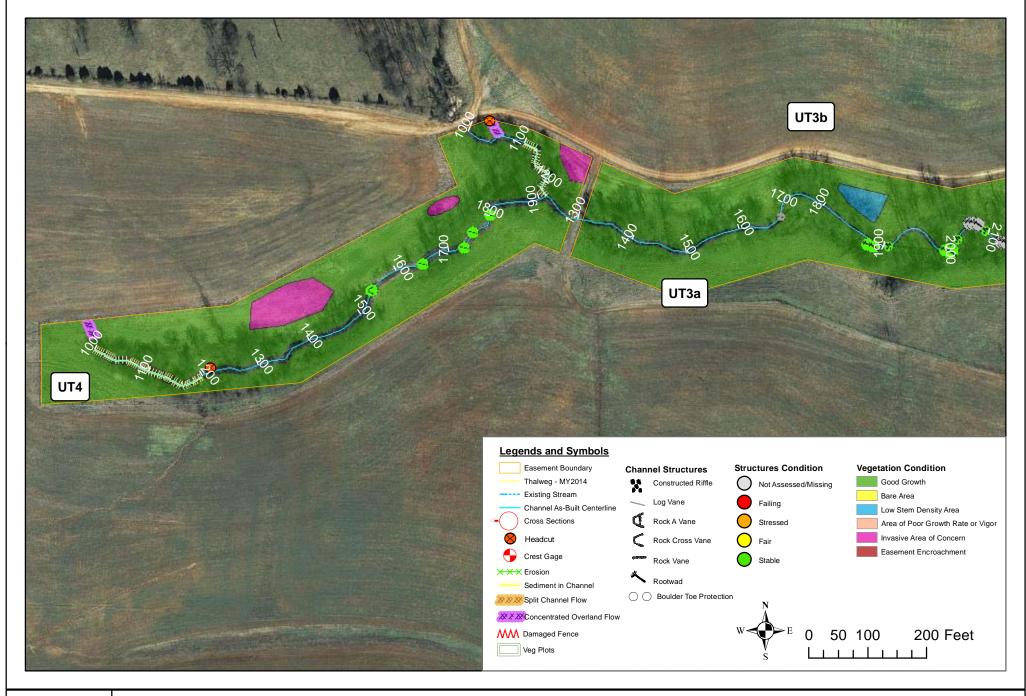
Date	Project Number	Figure		
11/17/2014	247	2		



Current Conditions Plan View UT1a, UT1b, UT2b, and M1

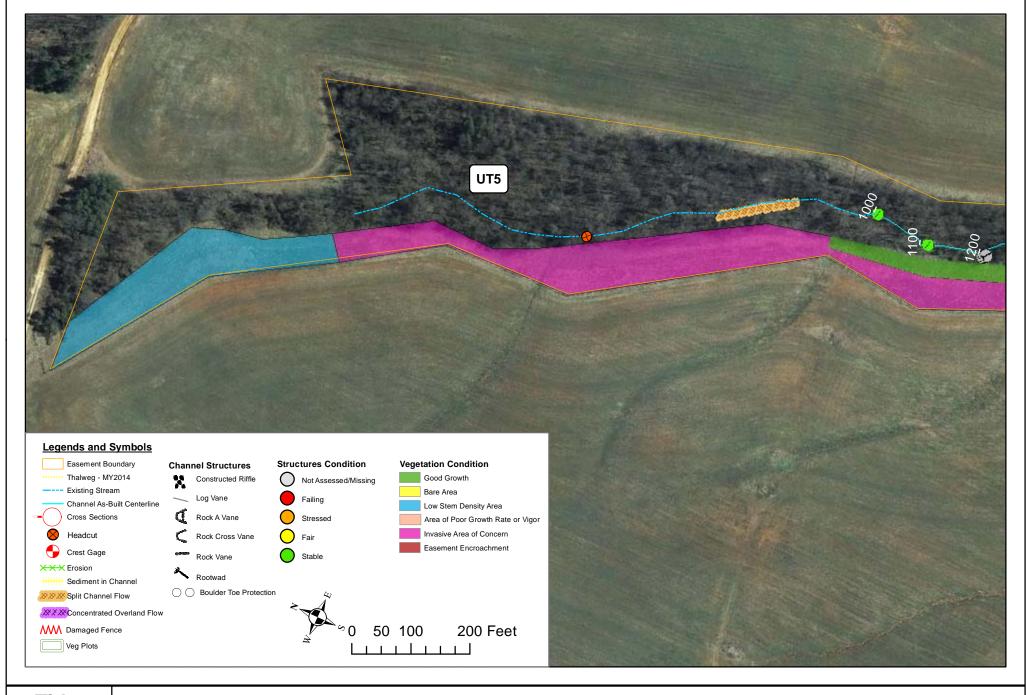
roject Meredell Farm Stream Restoration Monitoring Year 7 -- 2014 Randolph County, North Carolina

Date	Project Number	Figure
11/17/2014	247	3



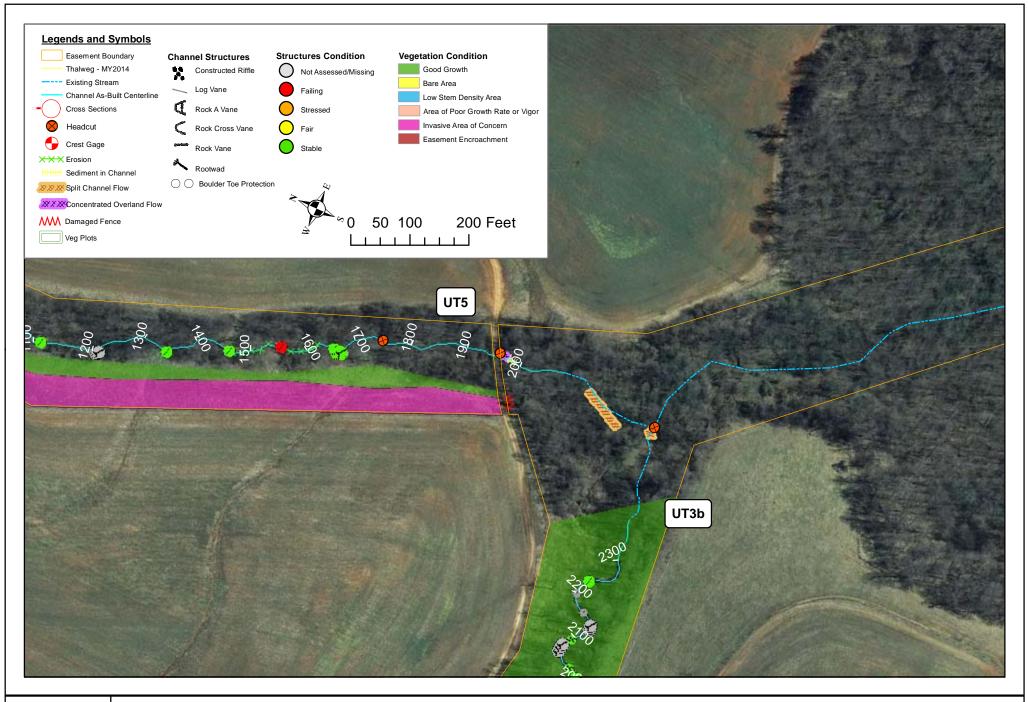
Current Conditions Plan View M1 and Sandy Creek 1

Meredell Farm Stream Restoration Monitoring Year 7 -- 2014 Randolph County, North Carolina


L			
	Date	Project Number	Figure
	11/17/2014	247	4

Current Conditions Plan View UT3a, UT3b, and UT4

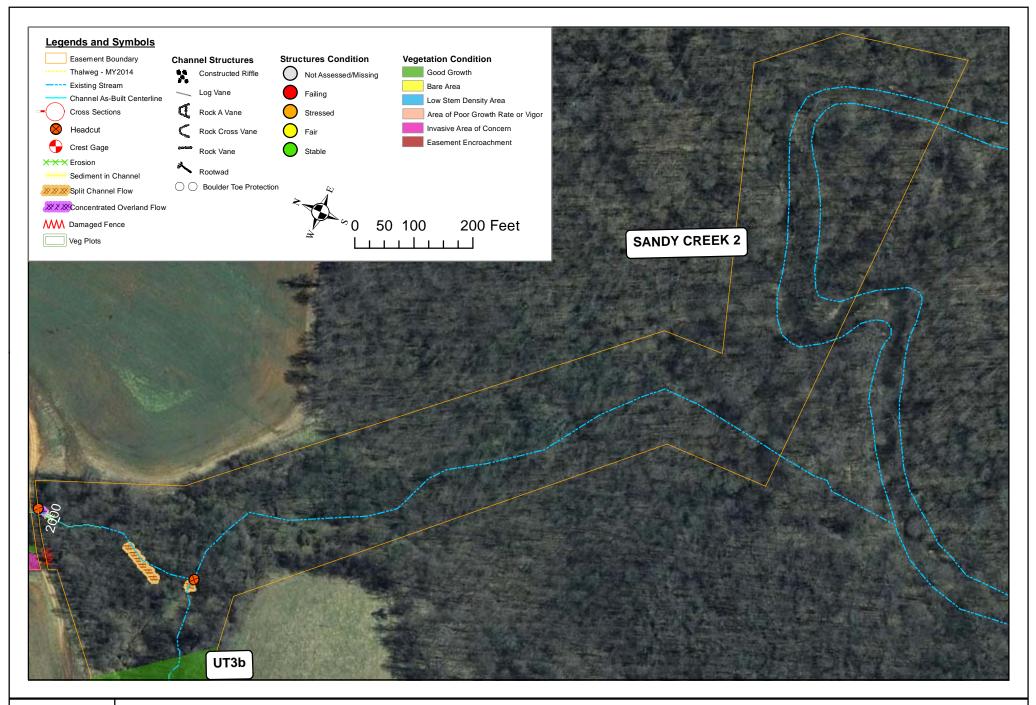
Project Meredell Farm Stream Restoration Monitoring Year 7 -- 2014 Randolph County, North Carolina



Current Conditions Plan View UT5

Project | Meredell Farm Stream Restoration Monitoring Year 7 -- 2014 Randolph County, North Carolina

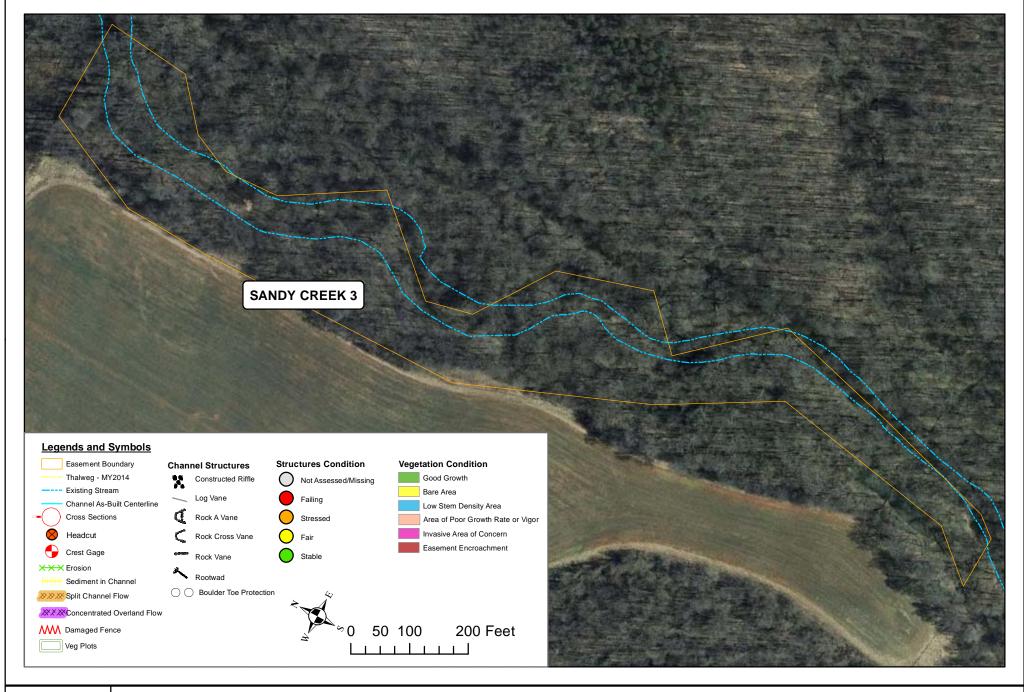
-		, ,	
	Date	Project Number	Figure
	11/17/2014	247	6


Current Conditions Plan View UT3b and UT5

Project

Meredell Farm Stream Restoration Monitoring `	Year 7 2014 Randolph County, North Carolina
---	---

Date	Project Number	Figure
11/17/2014	247	7



Current Conditions Plan View UT3b and Sandy Creek 2

ct Meredell Farm Stream Restoration Monitoring Year 7 -- 2014 Randolph County, North Carolina

Date	Project Number	Figure
11/17/2014	247	8

Current Conditions Plan View Sandy Creek 3

ect Meredell Farm Stream Restoration Monitoring Year 7 -- 2014 Randolph County, North Carolina

Date	Project Number	Figure
11/17/2014	247	9

Table 5.1 <u>Visual Stream Morphology Stability Assessment</u>

Reach ID UT1 Assessed Length 640

Major Channel Category	Channel Sub-Category	Metric	Number Stable, Performing as Intended	Total Number in As-built	Number of Unstable Segments	Amount of Unstable Footage	% Stable, Performing as Intended	Number with Stabilizing Woody Vegetation	Footage with Stabilizing Woody Vegetation	Adjusted % for Stabilizing Woody Vegetation
1. Bed	Vertical Stability (Riffle and Run units)	Aggradation - Bar formation/growth sufficient to significantly deflect flow laterally (not to include point bars)			0	0	100%			
		Degradation - Evidence of downcutting			0	0	100%			
	2. Riffle Condition	Texture/Substrate - Riffle maintains coarser substrate	5	5			100%			
	3. Meander Pool Condition	1. <u>Depth</u> Sufficient (Max Pool Depth : Mean Bankfull Depth ≥ 1.6)	5	5			100%			
		Length appropriate (>30% of centerline distance between tail of upstream riffle and head of downstrem riffle)	5	5			100%			
	4.Thalweg Position	Thalweg centering at upstream of meander bend (Run)	5	5			100%			
		Thalweg centering at downstream of meander (Glide)	5	5			100%			
2. Bank	1. Scoured/Eroding	Bank lacking vegetative cover resulting simply from poor growth and/or scour and erosion			0	0	100%	0	0	100%
	2. Undercut	Banks undercut/overhanging to the extent that mass wasting appears likely. Does NOT include undercuts that are modest, appear sustainable and are providing habitat.			0	0	100%	0	0	100%
	3. Mass Wasting	Bank slumping, calving, or collapse			0	0	100%	0	0	100%
				Totals	0	0	100%	0	0	100%
3. Engineered Structures	1. Overall Integrity	Structures physically intact with no dislodged boulders or logs.	25	25			100%			
	2. Grade Control	Grade control structures exhibiting maintenance of grade across the sill.	25	25			100%			
	2a. Piping	Structures lacking any substantial flow underneath sills or arms.	25	25			100%			
	3. Bank Protection	Bank erosion within the structures extent of influence does <u>not</u> exceed 15%. (See guidance for this table in EEP monitoring guidance document)	25	25			100%			
	4. Habitat	Pool forming structures maintaining \sim Max Pool Depth : Mean Bankfull Depth ratio \geq 1.6 Rootwads/logs providing some cover at base-flow.	25	25			100%			

Table 5.2 <u>Visual Stream Morphology Stability Assessment</u>

Reach ID UT2 Assessed Length 350

Major Channel Category	Channel Sub-Category	Metric	Number Stable, Performing as Intended	Total Number in As-built	Number of Unstable Segments	Amount of Unstable Footage	% Stable, Performing as Intended	Number with Stabilizing Woody Vegetation	Footage with Stabilizing Woody Vegetation	Adjusted % for Stabilizing Woody Vegetation
1. Bed	Vertical Stability (Riffle and Run units)	Aggradation - Bar formation/growth sufficient to significantly deflect flow laterally (not to include point bars)			0	0	100%			
		Degradation - Evidence of downcutting			0	0	100%			
	2. Riffle Condition	Texture/Substrate - Riffle maintains coarser substrate	5	5			100%			
	3. Meander Pool Condition	1. <u>Depth</u> Sufficient (Max Pool Depth : Mean Bankfull Depth ≥ 1.6)	4	4			100%			
		Length appropriate (>30% of centerline distance between tail of upstream riffle and head of downstrem riffle)	4	4			100%			
	4.Thalweg Position	Thalweg centering at upstream of meander bend (Run)	3	3			100%			
		2. Thalweg centering at downstream of meander (Glide)	3	3			100%			
2. Bank	1. Scoured/Eroding	Bank lacking vegetative cover resulting simply from poor growth and/or scour and erosion			0	0	100%	0	0	100%
	2. Undercut	Banks undercut/overhanging to the extent that mass wasting appears likely. Does NOT include undercuts that are modest, appear sustainable and are providing habitat.			0	0	100%	0	0	100%
	3. Mass Wasting	Bank slumping, calving, or collapse			0	0	100%	0	0	100%
				Totals	0	0	100%	0	0	100%
3. Engineered Structures	1. Overall Integrity	Structures physically intact with no dislodged boulders or logs.	15	15			100%			
	2. Grade Control	Grade control structures exhibiting maintenance of grade across the sill.	15	15			100%			
	2a. Piping	Structures lacking any substantial flow underneath sills or arms.	15	15			100%			
	3. Bank Protection	Bank erosion within the structures extent of influence does <u>not</u> exceed 15%. (See guidance for this table in EEP monitoring guidance document)	15	15			100%			
	4. Habitat	Pool forming structures maintaining \sim Max Pool Depth : Mean Bankfull Depth ratio \geq 1.6 Rootwads/logs providing some cover at base-flow.	15	15			100%			

Table 5.3 <u>Visual Stream Morphology Stability Assessment</u>
Reach ID M1

Reach ID M1
Assessed Length 3200

Major Channel Category	Channel Sub-Category	Metric	Number Stable, Performing as Intended	Total Number in As-built	Number of Unstable Segments	Amount of Unstable Footage	% Stable, Performing as Intended	Number with Stabilizing Woody Vegetation	Footage with Stabilizing Woody Vegetation	Adjusted % for Stabilizing Woody Vegetation
1. Bed	Vertical Stability (Riffle and Run units)	Aggradation - Bar formation/growth sufficient to significantly deflect flow laterally (not to include point bars)			0	0	100%			
		Degradation - Evidence of downcutting			0	0	100%			
	2. Riffle Condition	Texture/Substrate - Riffle maintains coarser substrate	25	25			100%			
	3. Meander Pool Condition	Depth Sufficient (Max Pool Depth : Mean Bankfull Depth ≥ 1.6)	23	23			100%			
		Length appropriate (>30% of centerline distance between tail of upstream riffle and head of downstrem riffle)	23	23			100%			
	4.Thalweg Position	Thalweg centering at upstream of meander bend (Run)	26	26			100%			
		Thalweg centering at downstream of meander (Glide)	26	26			100%			
2. Bank	1. Scoured/Eroding	Bank lacking vegetative cover resulting simply from poor growth and/or scour and erosion			0	0	100%	0	0	100%
	2. Undercut	Banks undercut/overhanging to the extent that mass wasting appears likely. Does NOT include undercuts that are modest, appear sustainable and are providing habitat.			0	0	100%	0	0	100%
	3. Mass Wasting	Bank slumping, calving, or collapse			0	0	100%	0	0	100%
				Totals	0	0	100%	0	0	100%
3. Engineered Structures	1. Overall Integrity	Structures physically intact with no dislodged boulders or logs.	48	48			100%			
	2. Grade Control	Grade control structures exhibiting maintenance of grade across the sill.	48	48			100%			
	2a. Piping	Structures lacking any substantial flow underneath sills or arms.	46	48			96%			
	3. Bank Protection	Bank erosion within the structures extent of influence does <u>not</u> exceed 15%. (See guidance for this table in EEP monitoring guidance document)	45	48			94%			
	4. Habitat	Pool forming structures maintaining ~ Max Pool Depth : Mean Bankfull Depth ratio ≥ 1.6 Rootwads/logs providing some cover at base-flow.	48	48			100%			

Vegetation Condition Assessment Table 6 Pla

lanted Acreage ¹	33.7
-----------------------------	------

Vegetation Category	Definitions	Mapping Threshold	CCPV Depiction	Number of Polygons	Combined Acreage	% of Planted Acreage
1. Bare Areas	Very limited cover of both woody and herbaceous material.	0.1 acres	Pattern and Color	0	0.00	0.0%
2. Low Stem Density Areas	Woody stem densities clearly below target levels based on MY3, 4, or 5 stem count criteria.	0.1 acres	Pattern and Color	7	10.57	31.4%
			Total	7	10.57	31.4%
3. Areas of Poor Growth Rates or Vigor	Areas with woody stems of a size class that are obviously small given the monitoring year.	0.25 acres	Pattern and Color	1	0.26	0.8%
		Cu	mulative Total	8	10.83	32.1%

Easement Acreage² 55.6

Vegetation Category	Definitions	Mapping Threshold	CCPV Depiction	Number of Polygons	Combined Acreage	% of Easement Acreage
4. Invasive Areas of Concern ⁴	Areas or points (if too small to render as polygons at map scale).	1000 SF	Pattern and Color	6	2.56	4.6%
5. Easement Encroachment Areas ³	Areas or points (if too small to render as polygons at map scale).	none	Pattern and Color	0	0.00	0.0%

Appendix C Vegetation Plot Data

									Table	7. Vege	tation Plot Criteria A	Attainm	ent							
	MY	1	MY2	?	MY3	}	MY4			M	Y5			M	Y6			N	1 Y7	
Vegetation Plot ID	Vegetation Survival Threshold Met?	Reach Mean		Reach Mean		Reach		Reach Mean	Stream Riparian Zone Vegetation Survival Threshold (260 stems/acre) Met?	Reach Mean	Buffer Mitigation Vegetation Survival Threshold (320 stems/acre) Met?	Reach Mean	Stream Riparian Zone Vegetation Survival Threshold (260 stems/acre) Met?	Reach Mean	Buffer Mitigation Vegetation Survival Threshold (320 stems/acre) Met?	Reach Mean	Stream Riparian Zone Vegetation Survival Threshold (260 stems/acre) Met?	Reach Mean	Buffer Mitigation Vegetation Survival Threshold (320 stems/acre) Met?	Reach Mean
247-01-0001	Y	100%	Y	50%	Y	50%	Y	100%	N	50%	N	0%	Y	100%	N	50%	Y	100%	N	50%
247-01-0002	Y	10070	N	3070	N	3070	Y	10070	Y	3070	N	070	Y	10070	Y	3070	Y	10070	Y	3070
247-01-0003	Y	100%	Y	100%	Y	100%	Y	100%	N	50%	N	50%	Y	100%	N	0%	Y	100%	N	0%
247-01-0004	Y	10070	Y	10070	Y	10070	Y	10070	Y	3070	Y	3070	Y	10070	N	070	Y	10070	N	070
247-01-0005	Y		Y		Y		N		N		N		Y		Y		Y		Y	1
247-01-0006	N		N		N		N		N		N		Y		Y		Y		N	i
247-01-0007	N		N		N		N		N		N		Y		Y		Y		Y	i
247-01-0008	Y	50%	Y	500/	Y	200/	Y	200/	N	120/	N	0%	Y	750/	N	57%	Y	75%	N	43%
247-01-0009	N	30%	N	50%	N	38%	N	38%	N	13%	N	U%0	N	75%	N	3/%	N	13%	N	43%
247-01-0010	N		N		N		N		N		N		N		N		N		N	1
247-01-0011	Y		Y		Y		Y		N		N		Y		Y		Y		Y	1
247-01-0012	Y		Y		Y		Y		Y		N/A		Y		N/A		Y		N/A	1

Table 8. CVS Vegetation Plot Metadata Meredell Farm Stream Restoration Site/247

Report Prepared By Kim Hamlin **Date Prepared** 10/27/2014 16:17

database name MDELL 247 MY07 2014 cvs-eep-entrytool-v2.3.1.mdb

G:\Environmental\NCEEP Meredell Farms SMS\MY07\AnnualMonitoringReport\MDELL 247 MY07 2014 AnnualMonitoringReport DRAFT\3 -

database location Vegetation Plot Data

computer name W93 file size 46829568

DESCRIPTION OF WORKSHEETS IN THIS DOCUMENT-----

Metadata Description of database file, the report worksheets, and a summary of project(s) and project data.

Proj. planted Each project is listed with its PLANTED stems per acre, for each year. This excludes live stakes.

Proj, total stems Each project is listed with its TOTAL stems per acre, for each year. This includes live stakes, all planted stems, and all natural/volunteer stems.

Plots List of plots surveyed with location and summary data (live stems, dead stems, missing, etc.).

Vigor Frequency distribution of vigor classes for stems for all plots.
Vigor by Spp Frequency distribution of vigor classes listed by species.

Damage List of most frequent damage classes with number of occurrences and percent of total stems impacted by each.

Damage by SppDamage values tallied by type for each species.Damage by PlotDamage values tallied by type for each plot.

Planted Stems by Plot and Spp A matrix of the count of PLANTED living stems of each species for each plot; dead and missing stems are excluded.

ALL Stems by Plot and spp A matrix of the count of total living stems of each species (planted and natural volunteers combined) for each plot; dead and missing stems are excluded.

PROJECT SUMMARY-----

Project Code 247

project Name Meredell Farm

Description Riparian Buffer Restoration

River Basin Cape Fear length(ft) 9601 stream-to-edge width (ft) 100 area (sq m) 201,533 Required Plots (calculated) 12 Sampled Plots 12

EEP Project Code 247. Project Name: Meredell Farm
Table 9 Planted and Total Stem counts (Species by Plot with Annual Means)

														Curr	ent Plot	Data (MY	7 2014)																			Annual N	Means						
			E247-0	01-0001		E247-01-0			7-01-0003		17-01-0004	E24	7-01-0005	E247-01		E24	7-01-000		E247-01-0			-01-0009	E24	17-01-0010	E247	-01-0011	E247-01		MY7 (2	014)	M'	Y6 (2013)		MY5 (2012	_	MY4 (20	. ,	MY3 ((2010)		2 (2009)		1Y1 (2009)
Scientific Name	Common Name	Species Type	PnoLS P-a	all T	Pno	oLS P-all	Т	PnoLS P	P-all T	PnoLS	P-all T	PnoLS	P-all T	PnoLS P-al	I T	PnoLS	P-all T	Pno	LS P-all	T P	PnoLS P-	all T	PnoLS	P-all T	PnoLS	P-all T	PnoLS P-al	T	PnoLS P-all	Т	PnoLS	P-all T	PnoL	S P-all T	Pn	noLS P-all	i T	PnoLS P-a	II T	PnoLS P-	-all T	PnoLS	P-all T
Acer negundo	boxelder	Tree																									1	1 3	1	1 3	1	1	1										
Acer rubrum	red maple	Tree																		4					6	6	10 4	4 28	10 1	.0 42	10	10	37 1	12 12	12	12 1	12 12	10	10 1	.0 11	11 :	11	
Alnus serrulata	hazel alder	Shrub								1																				1													
Asimina triloba	pawpaw	Tree												2	2	2				2									2	2 4	2	2	2	2 2	2	1	1 1	1	1	1		1	1
Betula nigra	river birch	Tree				1 1	2	4	4	6 1	1	1 2	2 2			4		1	4 4	4 7							2 2	2 2	14 1	.4 27	13	13	14 1	14	14	13 1	13 13	12	12 1	.2 10	10 :	10 12	12 1
Carya	hickory	Tree																																			'	1	1	1 2	2	2	
Chamaecyparis thyoides	Atlantic white cedar	Tree										1	1 1	1	1	1													2	2 2	6	6	6	9 9	9								
Cornus amomum	silky dogwood	Shrub										1	1 2	1	1	1												1 1	2	3 4	2	3	6	4 5	5		1 1		1	1	2	2	2
Corylus americana	American hazelnut	Shrub								4	4	5																	4	4 5	4	4	4	4 4	4	5	5 5	5	5	5 10	10	10 11	11 1
Diospyros virginiana	common persimmon	Tree	1	1	2					1		2	2 5			3	3	4							1	1	1		7	7 16	7	7	11	6 6	6	5	5 5	6	6	6 12	12	12 15	15 1
raxinus	ash	Tree																																			'					1	1
raxinus pennsylvanica	green ash	Tree					3					3	1			2														9				1 1	1	\bot	'						oxdot
lamamelis virginiana	American witchhazel	Tree	2	2	2			1	1	1 3	3	3																	6	6 6	6	6	6	6 6	6	1	1 1	1	1	1 3	3	3 3	3
uglans nigra	black walnut	Tree														2	2	2					3	3 3	3	3	3		8	8 8	7	7	8 1	10	10	5	5 5	4	5	5 6	6	6 2	2
uniperus virginiana	eastern redcedar	Tree			5		2			2			6			6 2	2	4		6									2	2 31	2	2	45	2 2	2		'						
igustrum sinense	Chinese privet	Exotic																										25		25			10				'						
indera benzoin	northern spicebush	Shrub																	1	1 1							2	2 6	3	3 7	3	3	3	3 3	3	3	3 3	2	2	2 5	5	5 9	9
iquidambar styraciflua	sweetgum	Tree											1	1	1	2			1	1 3									2	2 6	2	2	5	3 3	3	1	1 1						——
iriodendron tulipifera	tuliptree	Tree										1 2	2 3	1	1	5 1	1	1		3					2	2	2 10	10 10	16 1	.6 25	16	16	20 1	16 16	16	13 1	13 13	10	10 1	.0 8	8	8 8	8
lyssa sylvatica	blackgum	Tree										1						1												2							'						——
)xydendrum arboreum	sourwood	Tree						1	1	1																			1	1 1	1	1	1	1 1	1		'						
inus	pine	Tree																																1 1	1		'						
Pinus taeda	loblolly pine	Tree				1 1	. 2																						1	1 2	2	2	3				'						
Platanus occidentalis	American sycamore	_	3	3	3	3 3	3							1	1	1 2	2	2	2 2	2 2	1	1	1 1	1 1			2 3	3 3	16 1	18	16	16	17 1	L7 17	17	14 1	14 14	13	13 1	.3 14	14	14 12	12 1
opulus deltoides	eastern cottonwood	Tree																																			'	1	1	1 1	1	1 3	3
Quercus alba	white oak	Tree			2																									2							'			1	1	1	
Quercus falcata	southern red oak	Tree			1											1														2							'						
Quercus michauxii	swamp chestnut oak					1 1	2			2	2	2		1	1	1		1					1		2	2	2		6	6 9	6	6	6	6 6	6	6	6 6	5	5	5 8	8	8 7	7
Quercus nigra	water oak	Tree			_					1		1	1 1		_	\bot			_								1		1	1 2						——	 '				_	—	─
Quercus pagoda	cherrybark oak	Tree			_					1	1	1				1	1	1					\bot					_	2	2 2	2	2	3	4 4	4	2	2 2	1	1	1 3	3	3 4	4
Quercus phellos	willow oak	Tree			1	3 3	3					1				3				1			+				1	_	3	3 8	3	3	4	3 3	3	3	3 3	3	3	3 4	4	4 4	4
alix nigra	black willow	Tree		1	1				1:	3		1			_	\bot				1			+				3	_		1 17		1	2	1	1	$-\!$				\bot		—	$-\!\!\!\!-\!\!\!\!\!-$
alix sericea	silky willow	Shrub	6	14	14			7	7	7		1							2	3 3		1	1		2	4	4	_	17 2	29 29	18	32	33 2	23 39	39	18 3	33 33	18	31 3	1 19	49	19 1	. 33 3
ambucus canadensis	Common Elderberry				3					\perp		1	1			3				1			+	1			\bot	_		8			18	1 1		$-\!$	2 2	1	2	2	2	2	2
Ilmus	elm	Tree			_					\perp		1			_	\bot				1			+				\bot	_					_	1 1		$-\!$		1	1	1 3	3	3 3	3
Ilmus rubra	slippery elm	Tree			4					\perp													4					_					2	4			—— '					—	
		Stem count	12	21	34	9 9	17	13	13 3	2 11	11 1	7 9	9 23	8	8 3	5 11	11	17	10 1:	1 31	1	2	3 4	4 5	16	18		23 78	126 14		129		267 14		165	102 12			111 11		154 1	54 96	132 13
		size (ares)			_	1			1		1	1	1	1		1	1		1			1		1		1	1		12			12		12		12			.2		12		12
		size (ACRES)	0.	.02	_	0.02			0.02	ļ.,	0.02	_	0.02	0.0	12	╽	0.02		0.02		0	0.02	<u> </u>	0.02	L .	0.02	0.0		0.30			0.30		0.30		0.30			30		0.30		0.30
		Species count			10	5 5		4		8 5	5	8 6	6 10	7	7 1	4 6	6		5 5	5 9	1	2	3 2	2 3	6	6		7 8	22 2			22		21 22				18					18 1
		Stems per ACRE	485.6 84	19.8 13	376 36	4.2 364.2	688	526.1	526.1 129	5 445.2	445.2 68	8 364.2	364.2 930.8	323.7 323	3.7 141	6 445.2	445.2	688 404	1.7 445.2	1255	40.47 8	30.94 121.	4 161.9	161.9 202.3	647.5	728.4 125	55 890.3 930	1.8 3157	424.9 472.	1 1089	435	489 90	0.4 495	7 556.4	556.4	344 404	1.7 404.7	320.4 37	4.3 374.	3 404.7 5	519.3 51¢	1.3 323.7	4 445 2 445

Meredell Farm (#247) Year 7 (29-Sep-2014 to 08-Oct-2014)

Vegetation Plot Summary Information

Plot #	Riparian Buffer Stems ¹	Stream/ Wetland Stems ²	Live Stakes	Invasives	Volunteers ³	Total ⁴	Unknown Growth Form
0001	6	12	9	0	13	34	0
0002	8	9	0	0	8	17	0
0003	6	13	0	0	19	32	0
0004	7	11	0	0	6	17	0
0005	8	9	0	0	14	23	0
0006	7	8	0	0	27	35	0
0007	11	11	0	0	6	17	0
0008	7	10	1	0	20	31	0
0009	1	1	1	0	1	3	0
0010	4	4	0	0	1	5	0
0011	14	16	2	0	13	31	0
0012	n/a	22	1	25	55	53	0

Wetland/Stream Vegetation Totals

(per acre)

		(per u		
Plot #	Stream/ Wetland Stems ²	Volunteers 3	Total ⁴	Success Criteria Met?
0001	486	526	1376	Yes
0002	364	324	688	Yes
0003	526	769	1295	Yes
0004	445	243	688	Yes
0005	364	567	931	Yes
0006	324	1093	1416	Yes
0007	445	243	688	Yes
0008	405	809	1255	Yes
0009	40	40	121	No
0010	162	40	202	No
0011	647	526	1255	Yes
0012	890	2226	2145	Yes
Project Avg	425	617	1005	

Riparian Buffer Vegetation Totals

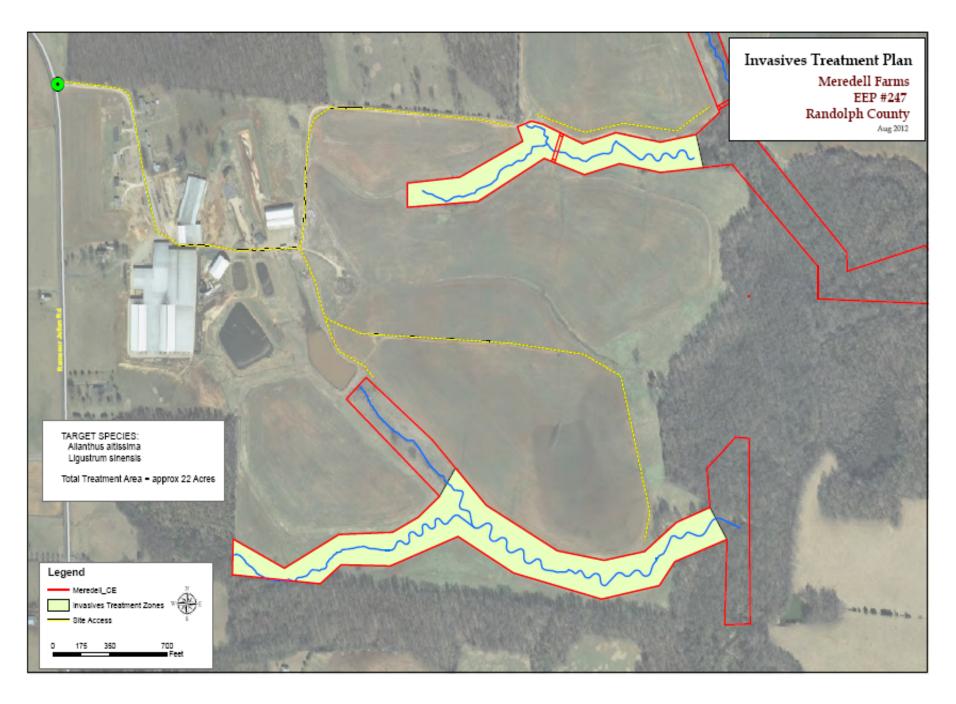
(per acre)

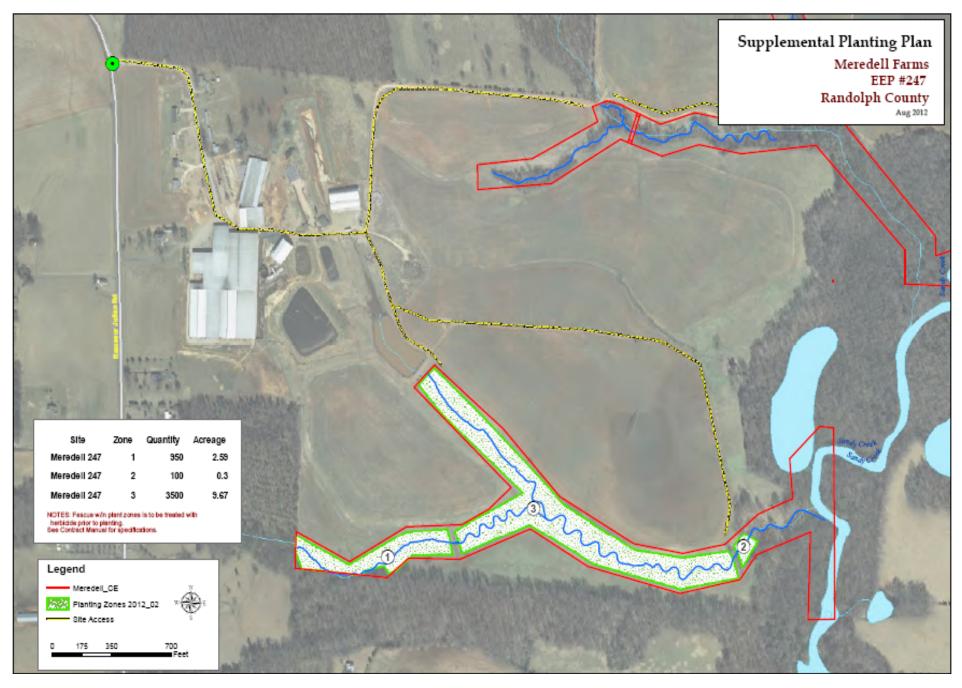
	Riparian Buffer	Success Criteria
Plot #	Stems ¹	Met?
0001	243	No
0002	324	Yes
0003	243	No
0004	283	No
0005	324	Yes
0006	283	No
0007	445	Yes
0008	283	No
0009	40	No
0010	162	No
0011	567	Yes
0012	n/a	n/a
Project Avg	291	

Stem Class characteristics

¹Buffer

Stems Native planted hardwood trees. Does NOT include shrubs. No pines. No vines.


²Stream/ Wetland

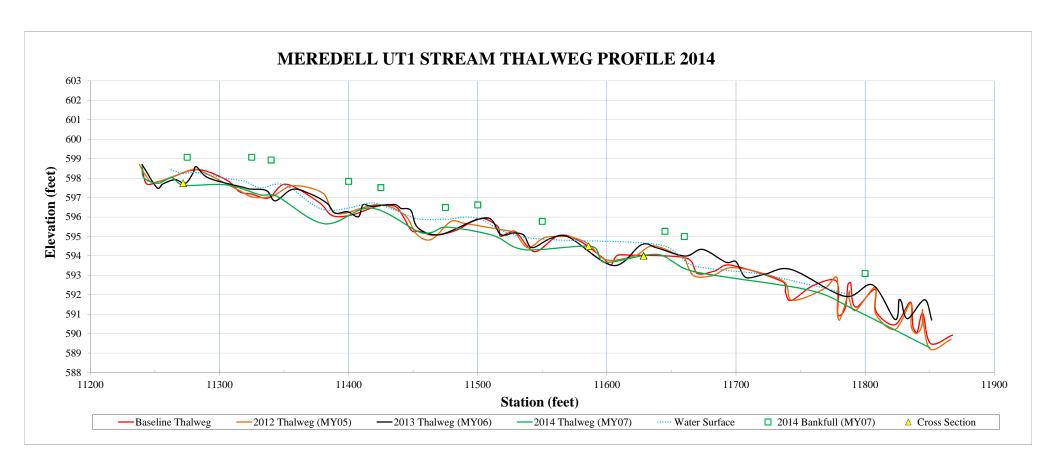

Stems Native planted woody stems. Includes shrubs, does NOT include live stakes. No vines

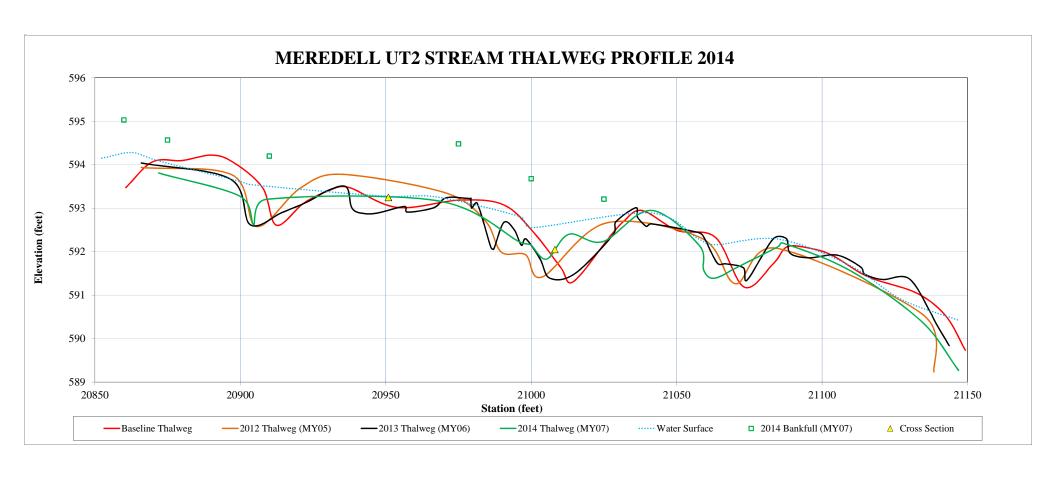
³Volunteers Native woody stems. Not planted. No vines.

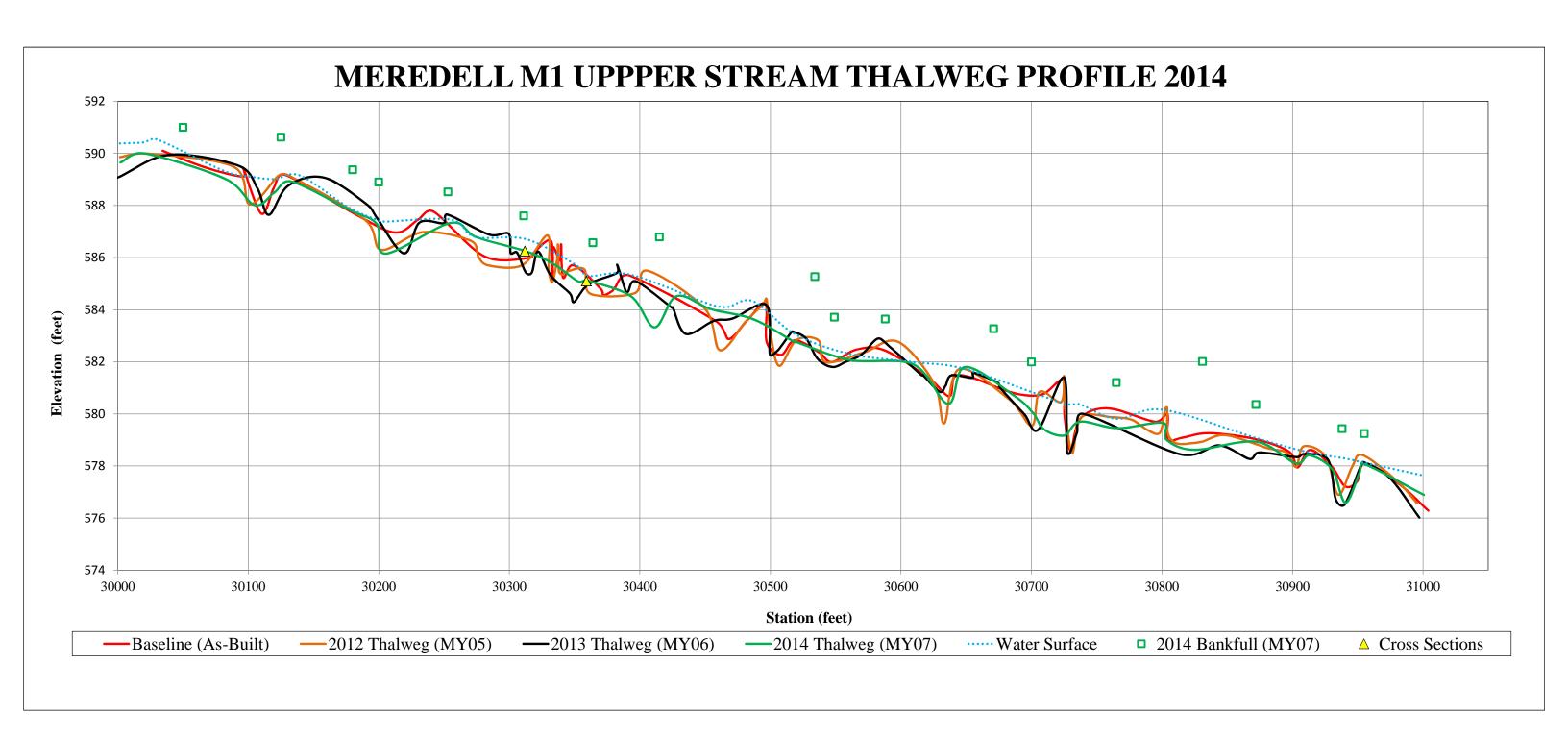
⁴Total Planted + volunteer native woody stems. Includes live stakes. Excl. exotics. Excl. vines.

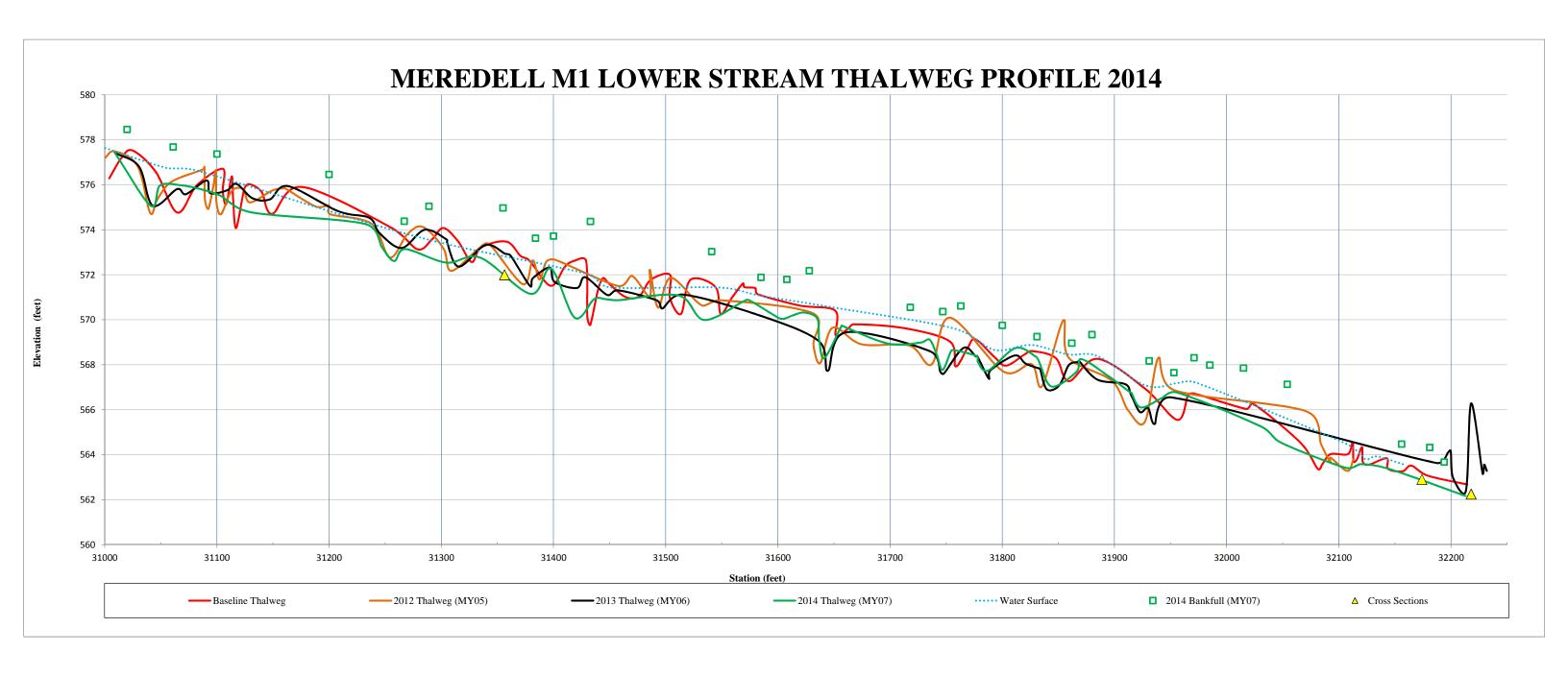
Meredell Farm EEP Project #247 November 2014

Meredell Farm EEP Project #247 November 2014


SEPI Engineering & Construction Annual Final Monitoring Report Monitoring Year 7 of 7




Southern Sugar Maple River Birch Sugar berry Persimmon Green ash	1 gallon 1 gallon 1 gallon 1 gallon	
Sugar berry Persimmon Green ash	1 gallon	449 385
Persimmon Green ash		385
Green ash	1 gallon	
		422
	1 gallon	400
Tulip poplar	1 gallon	261
Swamp Blackgum	1 gallon	370
Black Gum	1 gallon	248
Sycamore	1 gallon	81
Cottonwood	1 gallon	4
Swamp Chestnut Oak	1 gallon	200
Water Oak	1 gallon	175
Cherrybark Oak	1 gallon	217
Pin Oak	1 gallon	343
Willow Oak	1 gallon	490
Northern Red Oak	1 gallon	262
Shumard Oak	1 gallon	123
3		4500
	2	4500
	Cherrybark Oak Pin Oak	Cherrybark Oak 1 gallon Pin Oak 1 gallon Willow Oak 1 gallon Northern Red Oak 1 gallon


Appendix D Stream Survey Data

Parameter Gauge ² Regional Composition	Eq. Mi 4.:	Mere	dell Fa		eam R	estora	tion Sit	te/247	Dana	ム・I I T1												
Dimension and Substrate - Riffle Only Bankfull Width (ft) Floodprone Width (ft) Bankfull Mean Depth (ft) Bankfull Max Depth (ft) Bankfull Cross Sectional Area (ft²) Width/Depth Ratio Entrenchment Ratio Bank Height Ratio Profile Riffle Length (ft) Riffle Slope (ft/ft) Pool Length (ft) Pool Max depth (ft) Pool Spacing (ft) Radius of Curvature (ft) Re:Bankfull width (ft/ft) Meander Wavelength (ft) Meander Width Ratio Transport parameters Reach Shear Stress (competency) lb/f² Max part size (mm) mobilized at bankfull Stream Power (transport capacity) W/m² Additional Reach Parameters Rosgen Classification Bankfull Discharge (cfs) Valley length (ft)	Eq. Mi 4.:	Min	Pre-l					10/2-1			_											
Bankfull Width (ft) Floodprone Width (ft) Bankfull Mean Depth (ft) Bankfull Max Depth (ft) Bankfull Cross Sectional Area (ft²) Width/Depth Ratio Entrenchment Ratio Bank Height Ratio Frofile Riffle Length (ft) Riffle Slope (ft/ft) Pool Length (ft) Pool Max depth (ft) Pool Spacing (ft) Pattern Channel Beltwidth (ft) Radius of Curvature (ft) Re:Bankfull width (ft/ft) Meander Wavelength (ft) Meander Width Ratio Transport parameters Reach Shear Stress (competency) Ib/f² Max part size (mm) mobilized at bankfull Stream Power (transport capacity) W/m² Additional Reach Parameters Rosgen Classification Bankfull Discharge (cfs) Valley length (ft)	4.	Min		Existing	g Condi	tion			Refere	ence Re	each(es) Data			Design	1		Мо	nitorin	g Baseli	ne	
Floodprone Width (ft) Bankfull Mean Depth (ft) Bankfull Max Depth (ft) Bankfull Cross Sectional Area (ft²) Width/Depth Ratio Entrenchment Ratio Bank Height Ratio Profile Riifle Length (ft) Riifle Slope (ft/ft) Pool Length (ft) Pool Max depth (ft) Pool Spacing (ft) Pattern Channel Beltwidth (ft) Radius of Curvature (ft) Re:Bankfull width (ft/ft) Meander Wavelength (ft) Meander Width Ratio Transport parameters Reach Shear Stress (competency) Ib/f² Max part size (mm) mobilized at bankfull Stream Power (transport capacity) W/m² Additional Reach Parameters Rosgen Classification Bankfull Velocity (fps) Bankfull Discharge (cfs) Valley length (ft)	6.0		Mean	Med	Max	SD⁵	n	Min	Mean	Med	Max	SD ⁵	n	Min	Med	Max	Min	Mean	Med	Max	SD⁵	n
Bankfull Mean Depth (ft) Bankfull Max Depth (ft) Bankfull Cross Sectional Area (ft²) Width/Depth Ratio Entrenchment Ratio Bank Height Ratio Profile Riffle Length (ft) Riffle Slope (ft/ft) Pool Length (ft) Pool Max depth (ft) Pool Spacing (ft) Pattern Channel Beltwidth (ft) Radius of Curvature (ft) Re:Bankfull width (ft/ft) Meander Wavelength (ft) Meander Width Ratio Transport parameters Reach Shear Stress (competency) Ib/f² Max part size (mm) mobilized at bankfull Stream Power (transport capacity) W/m² Additional Reach Parameters Rosgen Classification Bankfull Velocity (fps) Bankfull Discharge (cfs) Valley length (ft)		4.1	8.0	6.4	14.7	4.0	6								7.3							
¹Bankfull Max Depth (ft) Bankfull Cross Sectional Area (ft²) Width/Depth Ratio Entrenchment Ratio ¹Bank Height Ratio Profile Riffle Length (ft) Riffle Slope (ft/ft) Pool Length (ft) Pool Max depth (ft) Pool Spacing (ft) Pattern Channel Beltwidth (ft) Radius of Curvature (ft) Re:Bankfull width (ft/ft) Meander Wavelength (ft) Meander Width Ratio Transport parameters Reach Shear Stress (competency) lb/f² Max part size (mm) mobilized at bankfull Stream Power (transport capacity) W/m² Additional Reach Parameters Rosgen Classification Bankfull Velocity (fps) Bankfull Discharge (cfs) Valley length (ft)	0.1	6.0	25.5	17.0	59.0	20.0	6															
Bankfull Cross Sectional Area (ft²) Width/Depth Ratio Entrenchment Ratio ¹Bank Height Ratio Profile Riffle Length (ft) Riffle Slope (ft/ft) Pool Length (ft) Pool Max depth (ft) Pool Spacing (ft) Radius of Curvature (ft) Re:Bankfull width (ft/ft) Meander Wavelength (ft) Meander Width Ratio Transport parameters Reach Shear Stress (competency) lb/f² Max part size (mm) mobilized at bankfull Stream Power (transport capacity) W/m² Additional Reach Parameters Rosgen Classification Bankfull Velocity (fps) Bankfull Discharge (cfs) Valley length (ft)	0.:	0.5	0.6	0.6	0.7	0.1	6								0.6							
Width/Depth Ratio Entrenchment Ratio 1 Bank Height Ratio Profile Riffle Length (ft) Riffle Slope (ft/ft) Pool Length (ft) Pool Max depth (ft) Pool Spacing (ft) Pattern Channel Beltwidth (ft) Radius of Curvature (ft) Re:Bankfull width (ft/ft) Meander Wavelength (ft) Meander Width Ratio Transport parameters Reach Shear Stress (competency) lb/f² Max part size (mm) mobilized at bankfull Stream Power (transport capacity) W/m² Additional Reach Parameters Rosgen Classification Bankfull Velocity (fps) Bankfull Discharge (cfs) Valley length (ft)	0.8	0.8	0.9	0.9	1.1	0.1	6							0.7	0.8	0.9						
Entrenchment Ratio Tansport parameters Reach Shear Stress (competency) Ib/T² Max part size (mm) mobilized at bankfull Stream Power (transport capacity) W/m² Additional Reach Parameters Rosgen Classification Bankfull Velocity (fps) Bankfull Discharge (cfs) Valley length (ft)		2.6	4.6	3.8	8.3	2.2	6								4.5							
Ibank Height Ratio Profile Riffle Length (ft) Riffle Slope (ft/ft) Pool Length (ft) Pool Max depth (ft) Pool Spacing (ft) Pattern Channel Beltwidth (ft) Radius of Curvature (ft) Resignaffull width (ft/ft) Meander Wavelength (ft) Meander Width Ratio **Transport parameters** Reach Shear Stress (competency) lb/f² Max part size (mm) mobilized at bankfull Stream Power (transport capacity) W/m² Additional Reach Parameters Rosgen Classification Bankfull Velocity (fps) Bankfull Discharge (cfs) Valley length (ft)	5.	5.7	14.0	11.8	26.2	7.4	6								12							
Profile Riffle Length (ft) Riffle Slope (ft/ft) Pool Length (ft) Pool Max depth (ft) Pool Spacing (ft) Pattern Channel Beltwidth (ft) Radius of Curvature (ft) Resignafull width (ft/ft) Meander Wavelength (ft) Meander Wavelength (ft) Meander Width Ratio Transport parameters Reach Shear Stress (competency) lb/f² Max part size (mm) mobilized at bankfull Stream Power (transport capacity) W/m² Additional Reach Parameters Rosgen Classification Bankfull Velocity (fps) Bankfull Discharge (cfs) Valley length (ft)	1.3	1.3	3.3	2.5	6.9	2.3	6															
Riffle Length (ft) Riffle Slope (ft/ft) Pool Length (ft) Pool Max depth (ft) Pool Spacing (ft) Pattern Channel Beltwidth (ft) Radius of Curvature (ft) Re:Bankfull width (ft/ft) Meander Wavelength (ft) Meander Width Ratio Transport parameters Reach Shear Stress (competency) lb/f² Max part size (mm) mobilized at bankfull Stream Power (transport capacity) W/m² Additional Reach Parameters Rosgen Classification Bankfull Velocity (fps) Bankfull Discharge (cfs) Valley length (ft)	1.1	1.1	3.0	3.4	4.6	1.5	6								1							
Riffle Slope (ft/ft) Pool Length (ft) Pool Max depth (ft) Pool Spacing (ft) Pattern Channel Beltwidth (ft) Radius of Curvature (ft) Re:Bankfull width (ft/ft) Meander Wavelength (ft) Meander Width Ratio Transport parameters Reach Shear Stress (competency) lb/f² Max part size (mm) mobilized at bankfull Stream Power (transport capacity) W/m² Additional Reach Parameters Rosgen Classification Bankfull Velocity (fps) Bankfull Discharge (cfs) Valley length (ft)																						
Pool Length (ft) Pool Max depth (ft) Pool Max depth (ft) Pool Spacing (ft) Pattern Channel Beltwidth (ft) Radius of Curvature (ft) Re:Bankfull width (ft/ft) Meander Wavelength (ft) Meander Width Ratio Transport parameters Reach Shear Stress (competency) lb/f² Max part size (mm) mobilized at bankfull Stream Power (transport capacity) W/m² Additional Reach Parameters Rosgen Classification Bankfull Velocity (fps) Bankfull Discharge (cfs) Valley length (ft)																						
Pool Max depth (ft) Pool Spacing (ft) Pattern Channel Beltwidth (ft) Radius of Curvature (ft) Rc:Bankfull width (ft/ft) Meander Wavelength (ft) Meander Width Ratio Transport parameters Reach Shear Stress (competency) lb/f² Max part size (mm) mobilized at bankfull Stream Power (transport capacity) W/m² Additional Reach Parameters Rosgen Classification Bankfull Velocity (fps) Bankfull Discharge (cfs) Valley length (ft)	0.0	0.093			0.022									0.013	0.018	0.022						
Pool Spacing (ft) Pattern Channel Beltwidth (ft) Radius of Curvature (ft) Re:Bankfull width (ft/ft) Meander Wavelength (ft) Meander Width Ratio Transport parameters Reach Shear Stress (competency) lb/f² Max part size (mm) mobilized at bankfull Stream Power (transport capacity) W/m² Additional Reach Parameters Rosgen Classification Bankfull Velocity (fps) Bankfull Discharge (cfs) Valley length (ft)																						
Pattern Channel Beltwidth (ft) Radius of Curvature (ft) Rc:Bankfull width (ft/ft) Meander Wavelength (ft) Meander Width Ratio Transport parameters Reach Shear Stress (competency) lb/f² Max part size (mm) mobilized at bankfull Stream Power (transport capacity) W/m² Additional Reach Parameters Rosgen Classification Bankfull Velocity (fps) Bankfull Discharge (cfs) Valley length (ft)			2.4											1.2	1.5	1.8						
Channel Beltwidth (ft) Radius of Curvature (ft) Rc:Bankfull width (ft/ft) Meander Wavelength (ft) Meander Width Ratio Transport parameters Reach Shear Stress (competency) lb/f² Max part size (mm) mobilized at bankfull Stream Power (transport capacity) W/m² Additional Reach Parameters Rosgen Classification Bankfull Velocity (fps) Bankfull Discharge (cfs) Valley length (ft)		18			171									14.7	25.7	36.7						
Radius of Curvature (ft) Rc:Bankfull width (ft/ft) Meander Wavelength (ft) Meander Width Ratio Transport parameters Reach Shear Stress (competency) lb/f² Max part size (mm) mobilized at bankfull Stream Power (transport capacity) W/m² Additional Reach Parameters Rosgen Classification Bankfull Velocity (fps) Bankfull Discharge (cfs) Valley length (ft)																						
Rc:Bankfull width (ft/ft) Meander Wavelength (ft) Meander Width Ratio Transport parameters Reach Shear Stress (competency) lb/f² Max part size (mm) mobilized at bankfull Stream Power (transport capacity) W/m² Additional Reach Parameters Rosgen Classification Bankfull Velocity (fps) Bankfull Discharge (cfs) Valley length (ft)	10	10			140									26	42.5	59						
Meander Wavelength (ft) Meander Width Ratio Transport parameters Reach Shear Stress (competency) lb/f² Max part size (mm) mobilized at bankfull Stream Power (transport capacity) W/m² Additional Reach Parameters Rosgen Classification Bankfull Velocity (fps) Bankfull Discharge (cfs) Valley length (ft)	13	13			45									15	18.5	22						
Meander Width Ratio Transport parameters Reach Shear Stress (competency) lb/f² Max part size (mm) mobilized at bankfull Stream Power (transport capacity) W/m² Additional Reach Parameters Rosgen Classification Bankfull Velocity (fps) Bankfull Discharge (cfs) Valley length (ft)	1.0	1.6			5.6									2	2.5	3						
Transport parameters Reach Shear Stress (competency) lb/f² Max part size (mm) mobilized at bankfull Stream Power (transport capacity) W/m² Additional Reach Parameters Rosgen Classification Bankfull Velocity (fps) Bankfull Discharge (cfs) Valley length (ft)	80	80			400									51	66	81						
Reach Shear Stress (competency) lb/f² Max part size (mm) mobilized at bankfull Stream Power (transport capacity) W/m² Additional Reach Parameters Rosgen Classification Bankfull Velocity (fps) Bankfull Discharge (cfs) Valley length (ft)	10	10			50.2									7	9	11						
Reach Shear Stress (competency) lb/f² Max part size (mm) mobilized at bankfull Stream Power (transport capacity) W/m² Additional Reach Parameters Rosgen Classification Bankfull Velocity (fps) Bankfull Discharge (cfs) Valley length (ft)																						
Max part size (mm) mobilized at bankfull Stream Power (transport capacity) W/m² Additional Reach Parameters Rosgen Classification Bankfull Velocity (fps) Bankfull Discharge (cfs) Valley length (ft)																						
Stream Power (transport capacity) W/m² Additional Reach Parameters Rosgen Classification Bankfull Velocity (fps) Bankfull Discharge (cfs) Valley length (ft)				0.8	31										0.26							
Additional Reach Parameters Rosgen Classification Bankfull Velocity (fps) Bankfull Discharge (cfs) Valley length (ft)				5	0										50							
Rosgen Classification Bankfull Velocity (fps) Bankfull Discharge (cfs) Valley length (ft)																						
Bankfull Velocity (fps) Bankfull Discharge (cfs) Valley length (ft)																						
Bankfull Discharge (cfs) Valley length (ft)			G	34, F4b,	E4b C4b)									C4							
Bankfull Discharge (cfs) Valley length (ft)																						
Valley length (ft)																						
Channel Thalweg length (ft)																						
Sinuosity (ft)				1.	2										1.4							
Water Surface Slope (Channel) (ft/ft)				0.02											0.011							
BF slope (ft/ft)															0.0159							
³ Bankfull Floodplain Area (acres)																						
⁴% of Reach with Eroding Banks																						
Channel Stability or Habitat Metric																						
Biological or Other																						

^{1 =} The distributions for these parameters can include information from both the cross-section surveys and the longitudinal profile. 2 = For projects with a proximal USGS gauge in-line with the project reach (added bankfull verification - rare).

^{3.} Utilizing survey data produce an estimate of the bankfull floodplain area in acres, which should be the area from the top of bank to the toe of the terrace riser/slope.

^{4 =} Proportion of reach exhibiting banks that are eroding based on the visual survey for comparison to monitoring data; 5. Of value/needed only if the n exceeds 3

												ata Sur													
					Mere	edell Fa	arm Str	eam R	estora	tion Si	te/247	- Reac	h: UT2	2b (294	l feet)										
Parameter	Gauge ²	Reg	jional C	urve		Pre-	Existin	g Cond	ition			Refere	ence Re	each(es) Data			Design	<u> </u>		Мо	nitorin	g Basel	ine	
Dimension and Substrate - Riffle Only		LL	UL	Eq.	Min	Mean	Med	Max	SD⁵	n	Min	Mean	Med	Max	SD⁵	n	Min	Med	Max	Min	Mean	Med	Max	SD ⁵	n
Bankfull Width (ft))				4.9	6.6	6.8	8.1	1.3	4								7.3							
Floodprone Width (ft)					10.0	12.3	11.0	17.0	3.2	4															
Bankfull Mean Depth (ft))				0.4	0.6	0.5	0.8	0.2	4								0.6							
¹ Bankfull Max Depth (ft)				0.8	1.0	1.0	1.2	0.2	4							0.7	0.8	0.9						
Bankfull Cross Sectional Area (ft ²)				2.4	3.7	3.1	6.2	1.8	4								4.5							
Width/Depth Ratio)				9.8	12.8	11.6	18.4	3.9	4								12							
Entrenchment Ratio	O				1.6	1.9	1.9	2.3	0.3	4															
¹ Bank Height Ratio	O				2.2	2.6	2.3	3.7	0.7	4								1							
Profile																									
Riffle Length (ft))																								
Riffle Slope (ft/ft))				0.009			0.225									0.016	0.021	0.027						
Pool Length (ft))										ĺ						ĺ								
Pool Max depth (ft)					1											1.2	1.5	1.8						
Pool Spacing (ft)					30			67									14.7	25.7	36.7						
Pattern																									
Channel Beltwidth (ft))				I	15					I						26	42.5	59	I					
Radius of Curvature (ft))				3			13									15	18.5	22						
Rc:Bankfull width (ft/ft))				0.4			1.9									2	2.5	3						
Meander Wavelength (ft)					60			95									51	66	81						
Meander Width Ratio					8.8			13.9									7	9	11						
Transport parameters																									
Reach Shear Stress (competency) lb/f	2						0.5	565										0.439							
Max part size (mm) mobilized at bankful							sa	ınd									ì	sand							
Stream Power (transport capacity) W/m	2						31	1.1										20.9							
Additional Reach Parameters																									
Rosgen Classification					Π		B5.	. E5										C4							
Bankfull Velocity (fps)								.9										3.1							
Bankfull Discharge (cfs)								3																	
Valley length (ft)																									
Channel Thalweg length (ft)																									
Sinuosity (ft)							1.	12										1.2							
Water Surface Slope (Channel) (ft/ft)							0.0											0.0134							
BF slope (ft/ft))										İ						İ	0.0166							
³ Bankfull Floodplain Area (acres)					l																				
⁴ % of Reach with Eroding Banks											1														
Channel Stability or Habitat Metric																									
Biological or Other											1														
Shaded cells indicate that these will typically not be filled in.																									

^{1 =} The distributions for these parameters can include information from both the cross-section surveys and the longitudinal profile. 2 = For projects with a proximal USGS gauge in-line with the project reach (added bankfull verification - rare).

^{3.} Utilizing survey data produce an estimate of the bankfull floodplain area in acres, which should be the area from the top of bank to the toe of the terrace riser/slope.

^{4 =} Proportion of reach exhibiting banks that are eroding based on the visual survey for comparison to monitoring data; 5. Of value/needed only if the n exceeds 3

												ıta Sum													
					Mere					tion Si	te/247	- Reac													
Parameter	Gauge ²	Reg	ional C	urve		Pre-	Existin	g Cond	ition			Refere	ence Re	each(es	s) Data			Design	1		Мо	nitorin	g Basel	ine	
Dimension and Substrate - Riffle Only		LL	UL	Eq.	Min	Mean	Med	Max	SD ⁵	n	Min	Mean	Med	Max	SD ⁵	n	Min	Med	Max	Min	Mean	Med	Max	SD⁵	n
Bankfull Width (ft)					4.6	6.4	6.7	7.6	1.3	4								10.2							
Floodprone Width (ft)					6.0	10.0	10.5	13.0	2.9	4															
Bankfull Mean Depth (ft))				8.0	1.0	1.0	1.1	0.1	4								8.0							
¹ Bankfull Max Depth (ft))				1.2	1.3	1.4	1.4	0.1	4							1	1.15	1.3						
Bankfull Cross Sectional Area (ft ²))				3.7	7.0	7.4	9.4	2.5	4								8.6							
Width/Depth Ratio					5.8	6.8	6.7	7.9	0.9	4								12							
Entrenchment Ratio)				1.2	1.5	1.5	1.9	0.3	4															
¹ Bank Height Ratio	O				2.8	3.0	2.9	3.4	0.3	4								1							
Profile	-																_								
Riffle Length (ft)																									
Riffle Slope (ft/ft)																	0.016	0.021	0.026						
Pool Length (ft)																									
Pool Max depth (ft))																1.7	2.1	2.5						
Pool Spacing (ft))																20.3	35.55	50.8						
Pattern																									
Channel Beltwidth (ft)					20			30									36	58.5	81						
Radius of Curvature (ft)					16			25									20	25	30						
Rc:Bankfull width (ft/ft)					2.5			3.9									2	2.5	3						
Meander Wavelength (ft)					70			170									71	91.5	112						
Meander Width Ratio					11			26.6									7	9	11						
Transport parameters																									
Reach Shear Stress (competency) lb/f3	2						0.	61										0.54							
Max part size (mm) mobilized at bankful							5	52										52							
Stream Power (transport capacity) W/m ²	2																								
Additional Reach Parameters																				_					
Rosgen Classification	ı						G	4c									П			Г					_
Bankfull Velocity (fps)								•																	
Bankfull Discharge (cfs)																									
Valley length (ft)																									
Channel Thalweg length (ft)																									
Sinuosity (ft)							1.	08																	
Water Surface Slope (Channel) (ft/ft)								013																	
BF slope (ft/ft))																								
³ Bankfull Floodplain Area (acres)																									
⁴ % of Reach with Eroding Banks	3																								
Channel Stability or Habitat Metric																									
Biological or Other																									
Shaded cells indicate that these will typically not be filled in.																									

^{1 =} The distributions for these parameters can include information from both the cross-section surveys and the longitudinal profile. 2 = For projects with a proximal USGS gauge in-line with the project reach (added bankfull verification - rare).

^{3.} Utilizing survey data produce an estimate of the bankfull floodplain area in acres, which should be the area from the top of bank to the toe of the terrace riser/slope.

^{4 =} Proportion of reach exhibiting banks that are eroding based on the visual survey for comparison to monitoring data; 5. Of value/needed only if the n exceeds 3

Table 10b.1 Baseline Stream Data Summary (Substrate, Bed, Bank, and Hydrologic Containment Parameter Distributions)

Meredell Farm Stream Restoration Site/247 - Reach: UT1b (780 feet)

Parameter	Pre	-Exis	ting (onditi	on		Refe	rence	Reac	h(es)	Data			Design	n			As-bι	ıilt/Ba	seline	
¹ Ri% / Ru% / P% / G% / S%																					
¹ SC% / Sa% / G% / C% / B% / Be%																					
¹ d16 / d35 / d50 / d84 / d95 / di ^p / di ^{sp} (mm)	0.8	11.2	38.4	63.2		50															
² Entrenchment Class <1.5 / 1.5-1.99 / 2.0-4.9 / 5.0-9.9 / >10																					
³ Incision Class <1.2 / 1.2-1.49 / 1.5-1.99 / >2.0																					

- 1 = Riffle, Run, Pool, Glide, Step; Silt/Clay, Sand, Gravel, Cobble, Boulder, Bedrock; dip = max pave, disp = max subpave
- 2 = Entrenchment Class Assign/bin the reach footage into the classes indicated and provide the percentage of the total reach footage in each class in the table. This will result from the measured cross-sections as well as visual estimates
- 3 = Assign/bin the reach footage into the classes indicated and provide the percentage of the total reach footage in each class in the table. This will result from the measured cross-sections as well as the longitudinal profile

Footnotes 2,3 - These classes are loosley built around the Rosgen classification and hazard ranking breaks, but were adjusted slightly to make for easier assignment to somewhat coarser bins based on visual estimates in the field such that measurement of every segment for ER would not be necessary.

The intent here is to provide the reader/consumer of design and monitoring information with a good general sense of the extent of hydrologic containment in the pre-existing and the rehabilitated states as well as comparisons to the reference distributions.

ER and BHR have been addressed in prior submissions as a subsample (cross-sections as part of the design survey), however, these subsamples have often focused entirely on facilitating design without providing a thorough pre-constrution distribution of these parameters, leaving the reader/consumer with a sample that is weighted heavily on the stable sections of the reach. This means that the distributions for these parameters should include data from both the cross-section and therefore can be readily integrated and provide a more complete sample distribution for threes parameters, thereby providing the distribution/coverage necessary to provide meaningful comparisons.

Table 10b.2 Baseline Stream Data Summary (Substrate, Bed, Bank, and Hydrologic Containment Parameter Distributions) Meredell Farm Stream Restoration Site/247 - Reach: UT2b (294 feet)

Parameter	Pre	-Exis	ting (Condit	ion		Refe	rence	Reac	h(es)	Data		[Desigr	1			As-bι	ıilt/Ba	seline	y	
¹ Ri% / Ru% / P% / G% / S%																						
¹ SC% / Sa% / G% / C% / B% / Be%																						
¹ d16 / d35 / d50 / d84 / d95 / di ^p / di ^{sp} (mm)	0.035	0.05	0.13	0.22		0.5																
² Entrenchment Class <1.5 / 1.5-1.99 / 2.0-4.9 / 5.0-9.9 / >10																						
³ Incision Class <1.2 / 1.2-1.49 / 1.5-1.99 / >2.0																						

Shaded cells indicate that these will typically not be filled in.

- 1 = Riffle, Run, Pool, Glide, Step; Silt/Clay, Sand, Gravel, Cobble, Boulder, Bedrock; dip = max pave, disp = max subpave
- 2 = Entrenchment Class Assign/bin the reach footage into the classes indicated and provide the percentage of the total reach footage in each class in the table. This will result from the measured cross-sections as well as visual estimates
- 3 = Assign/bin the reach footage into the classes indicated and provide the percentage of the total reach footage in each class in the table. This will result from the measured cross-sections as well as the longitudinal profile

Footnotes 2,3 - These classes are loosley built around the Rosgen classification and hazard ranking breaks, but were adjusted slightly to make for easier assignment to somewhat coarser bins based on visual estimates in the field such that measurement of every segment for ER would not be necessary.

The intent here is to provide the reader/consumer of design and monitoring information with a good general sense of the extent of hydrologic containment in the pre-existing and the rehabilitated states as well as comparisons to the reference distributions.

ER and BHR have been addressed in prior submissions as a subsample (cross-sections as part of the design survey), however, these subsamples have often focused entirely on facilitating design without providing a thorough pre-constrution distribution of these parameters, leaving the reader/consumer with a sample that is weighted heavily on the stable sections of the reach. This means that the distributions for these parameters should include data from both the cross-section and therefore can be readily integrated and provide a more complete sample distribution for threes parameters, thereby providing the distribution/coverage necessary to provide meaningful comparisons.

Table 10b.3 Baseline Stream Data Summary (Substrate, Bed, Bank, and Hydrologic Containment Parameter Distributions) Meredell Farm Stream Restoration Site/247 - Reach: M1 (3200 feet)

Parameter	Pre	-Exis	ting C	ondit	ion		Refe	rence	Reac	h(es)	Data		[Desig	า			As-bı	ıilt/Ba	seline	,	
¹ Ri% / Ru% / P% / G% / S%																						
¹ SC% / Sa% / G% / C% / B% / Be%																						
¹ d16 / d35 / d50 / d84 / d95 / di ^p / di ^{sp} (mm)	0.3	16.5	60.4	128		52																
² Entrenchment Class <1.5 / 1.5-1.99 / 2.0-4.9 / 5.0-9.9 / >10																						
³ Incision Class <1.2 / 1.2-1.49 / 1.5-1.99 / >2.0																						

Shaded cells indicate that these will typically not be filled in.

- 1 = Riffle, Run, Pool, Glide, Step; Silt/Clay, Sand, Gravel, Cobble, Boulder, Bedrock; dip = max pave, disp = max subpave
- 2 = Entrenchment Class Assign/bin the reach footage into the classes indicated and provide the percentage of the total reach footage in each class in the table. This will result from the measured cross-sections as well as visual estimates
- 3 = Assign/bin the reach footage into the classes indicated and provide the percentage of the total reach footage in each class in the table. This will result from the measured cross-sections as well as the longitudinal profile

Footnotes 2,3 - These classes are loosley built around the Rosgen classification and hazard ranking breaks, but were adjusted slightly to make for easier assignment to somewhat coarser bins based on visual estimates in the field such that measurement of every segment for ER would not be necessary.

The intent here is to provide the reader/consumer of design and monitoring information with a good general sense of the extent of hydrologic containment in the pre-existing and the rehabilitated states as well as comparisons to the reference distributions.

ER and BHR have been addressed in prior submissions as a subsample (cross-sections as part of the design survey), however, these subsamples have often focused entirely on facilitating design without providing a thorough pre-constrution distribution of these parameters, leaving the reader/consumer with a sample that is weighted heavily on the stable sections of the reach. This means that the distributions for these parameters should include data from both the cross-section and therefore can be readily integrated and provide a more complete sample distribution for threes parameters, thereby providing the distribution/coverage necessary to provide meaningful comparisons.

Appendix E Hydrologic Data

		ole 11. Verification of Bankfull Events edell Farm Stream Restoration Site/247	
Date of Data Collection	Date of Occurrence	Method	Photo # (if available)
8/24/2010	N/A	*Crest Gauge Reading: 1.96'	
10/20/2011	N/A	Crest Gauge indicates BKF event	
3/26/2012	N/A	Wracklines indicate BKF event on UT1b	SP2 (MY5 report)
10/18/2012	N/A	*Crest Gauge Reading: 1.17'	SP1 (MY5 report)
10/30/2013	N/A	*Crest Gauge Reading: 3.6'	SP1 (MY6 report)
10/30/2013	N/A	Wracklines indicate BKF event on M1	SP2 (MY6 report)
10/1/2014	N/A	*Crest Gauge Reading: 1.17'	SP1 (below)

^{*}Design bankfull depth range for reach M1 is 1.0' to 1.3'. Crest gauge readings occurring at, above, or within this range are recorded as bankfull indicators

SP1: Crest Gauge Reading